Ultrasound Elasticity Imaging Methods

초음파 탄성 영상법

  • Jeong, Mok-Kun (Departments of Electronic and Communication Engineering, Daejin University) ;
  • Kwon, Sung-Jae (Departments of Electronic and Communication Engineering, Daejin University)
  • Received : 2010.02.05
  • Accepted : 2010.03.09
  • Published : 2010.03.31

Abstract

The difference in echogenicity between cancerous and normal tissues is not quite distinguishable in ultrasound B-mode imaging. However, tumor or cancer in breast or prostate tends to be stiffer than the surrounding normal tissue. Thus, imaging the stiffness contrast between the two different tissue types is helpful for quantitative diagnosis, and such a method of imaging the elasticity of human tissue is collectively referred to as ultrasound elasticity imaging. Recently, elasticity imaging has established itself as an effective diagnostic modality in addition to ultrasound B-mode imaging. The purpose of this paper is to present various elasticity imaging methods that have been reported up to now and to describe their principles of operation and characteristics.

Keywords

References

  1. T. Sato. Y. Yamakoshi, and T. Nakamura, "Nonlinear tissue imaging," in Proc, IEEE Ultrason. Symp., 1986, pp. 889-900.
  2. D. Yanwa, T. Jia, and S. Yongchen, "Relations between the acoustic nonlinearity parameter and sound speed and tissue composition." in Proc. IEEE Ultrason. Symp., 1987, pp. 931-934.
  3. P. He and A. McGoron, "Parameter estimation for nonlinear frequency dependent attenuation in soft tissue," Ultrasound Med. Biol., vol. 15, no. 8, pp. 757-763, 1989, https://doi.org/10.1016/0301-5629(89)90116-6
  4. Y. Hayakawa, T. Wagai, K. Yosioka, T. Inada, T. Suzuki, H. Yagami, and T. Fujii, "Measurement of ultrasound attenuation coefficient by a multifrequency echo technique-Theory and basic experiments." IEEE Trans. Ultrason. Ferroetectr. Frea. Control, vol. 33, no. 6, pp. 759-764, Nov. 1986. https://doi.org/10.1109/T-UFFC.1986.26893
  5. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," UItrason. Imaging, vol. 13, pp. 111-134, 1991. https://doi.org/10.1016/0161-7346(91)90079-W
  6. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, vol. 20 pp. 260-274, 1998. https://doi.org/10.1177/016173469802000403
  7. M. O'Donnell, M. A. Lubinski, and S. Y. Emelianov, "Speckle tracking methods for ultrasonic elasticity imaging using shorttime correlation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 1, pp, 82-96, Jan. 1999. https://doi.org/10.1109/58.741427
  8. T. Shiina, N. Nitta, E. Ueno, and J. C. Bamber, "Real time tissue elasticity imaging using the combined autocorrelation method," J. Med. Uitreson., vol. 29, pp. 119-128, 2002. https://doi.org/10.1007/BF02481234
  9. A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, "A timeefficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation," IEEE Trans. Ultrason. Ferroelectr. Frea, Control, vol. 46, no. 5, pp. 1057-1067, Sept. 1999. https://doi.org/10.1109/58.796111
  10. M. K. Jeong and S. J. Kwon, "Enhanced strain imaging using quality measure," J. Acoust, Soc. Kor., vol, 27, no. 3E, pp.84-94, Sept. 2008.
  11. J. Ophir and I. Cespedes, "Reduction of image noise in elastography," Ultrason. Imaging, vol. 15, pp. 89-102, 1993. https://doi.org/10.1006/uimg.1993.1008
  12. J. Ophir and F. Kallel, "A least-squares strain estimator for elastoqraphy," Ultrason. Imaging. vol. 19, pp. 195-208, 1997. https://doi.org/10.1177/016173469701900303
  13. S. Kaisar Alam, Jonathan Ophir, and E. E. Konofagou, "An adaptive strain estimator for elastoqrapny,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 2, pp. 461-472, Mar. 1998. https://doi.org/10.1109/58.660156
  14. T. Varghese and J. Ophir, "Enhancement of echo-signal correlation in elastography using temporal stretching," IEEE Trans. Ultrason. Ferroelectr. Freq, Control, vol. 44, no. 1, pp. 173-180, Jan. 1997. https://doi.org/10.1109/58.585213
  15. J. E. Lindop, G. M. Treece, A. H. Gee, and R. W. Prager, "Estimation of displacement location for enhanced strain imaging," IEEE Trans. Ultrason, Ferroeectr, Freq, Control, vol. 54, no. 9, pp. 1751-1771. Sept. 2007. https://doi.org/10.1109/TUFFC.2007.460
  16. F. Kallel, J. Ophir, K. Magee, and T. Krouskop, "Elastcqraphic imaging of low contrast elastic modulus distribution in tissue," Ultrasound Med, Biol., vol. 24, no. 3, pp, 409-425, 1998. https://doi.org/10.1016/S0301-5629(97)00287-1
  17. R. Righetti, F. Kallel, R. J. Stafford, R. E. Price, T. A. Krouskop, J. D. Hazle, and J. Ophir, "Elastographic Characterization of HIFU-induced lesions in canine livers", Ultrasound Med, Biol., vol. 25, no. 7, pp. 1099-1113, 1999. https://doi.org/10.1016/S0301-5629(99)00044-7
  18. J. Ophir, S. K. Alam, B. Garra, F. Kallel, Konofagou, T. Krouskop, and T. Varghese, "Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues," J. Eng. Med., vol. 213, no. 3, pp. 203-233, 1999. https://doi.org/10.1243/0954411991534933
  19. L. Sandrin, M. Tanter, S. Catheline, and M. Fink, "Shear modulus imaging with 2-D transient elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 49, no. 4, pp. 426-435, Apr. 2002.
  20. M. Fink, L. Sandrin, M. Tanter, S. Catheline, S. Chaffai, J. Bercoff, and J.-L. Gennisson. "Ultra high speed imaging of elasticity: in Proc IEEE Ultrason, Symp., 2002, pp. 1811-1820.
  21. K. J. Parker, L. Gao. S. K. Alam, D. Rubens, and R. M. Lerner, "Sonoelasticity Imaging: Theory and applications: in Proc Ultrason. Symp., 1996, pp. 623-628.
  22. L. S. Taylor, B. C. Porter, D. J. Rubens, and K. J. Parker, "Three-dimensional sonoelastography: Principles and practices," Phys. Med. Biol.. vol. 45. pp. 1477-1494, 2000. https://doi.org/10.1088/0031-9155/45/6/306
  23. A. P. Sarvazyan, O. V. Rudenko, S, D. Swanson, J. B, Fowlkes, and S. Y. Emelianov, "Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., vol. 24. no. 9, pp. 1419-1435, 1998. https://doi.org/10.1016/S0301-5629(98)00110-0
  24. S. McAleavey, M. Menon, and D. J. Rubens. "Acoustic radiation force impulse imaging of excised human prostates," in Proc, IEEE Ultrason. Symp., 2000, pp. 1663-1666.
  25. K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, "On the feasibility of remote palpation using acoustic radiation force," J. Acoust, Soc. Am., vol. 110, no. 1, pp. 625-634, July 2001. https://doi.org/10.1121/1.1378344
  26. K. Nightingale, M. S. Soo, R. Nightingale, E. Bentley, and G. Trahey, "In vivo demonstration of acoustic radiation force impulse imaging in the thyroid, abdomen, and breast," in Proc, IEEE Ultrason. Symp., 2001, pp. 1633-1638.
  27. K. Nightingale, M. S. Soo, R. Nightingale, R. Bentley, D. Stutz, M. Palmeri, J. Dahl, and G, Trahey, "Acoustic radiation force impulse imaging: Remote palpation of the mechanical properties of tissue," in Proc. IEEE Ultrason. Symp.. 2002, pp. 1821-1830.
  28. B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, "Acoustic radiation force impulse imaging of the abdomen: Demonstration of feasibility and utility," Ultrasound Med. Biol., vol. 31, no. 9, pp. 1185-1198, 2005. https://doi.org/10.1016/j.ultrasmedbio.2005.05.004
  29. M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, "A finite-element method model of soft tissue response to impulsive acoustic radiation force," IEEE Trans. Ultrason. Ferroelectr, Freq, Control, vol. 52, no. 10, pp. 1699-1712, Oct. 2005. https://doi.org/10.1109/TUFFC.2005.1561624
  30. M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, "Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 53, no. 7, pp. 1300-1313, July 2006. https://doi.org/10.1109/TUFFC.2006.1665078
  31. B. J. Fahey, R. C. Nelson, S. J. Hsu, D. P Bradway, D. M. Dumont, and G. E. Trahey, "In vivo acoustic radiation force impulse imaging of abdominal lesions," in Proc, IEEE Ultrason. Symp., 2007, pp. 440-443.
  32. M. Fatemi and J. F. Greenleaf, "Ultrasound-stimulated vibroacoustic spectrography," Science, vol. 280, no. 3, pp. 82-85, Apr. 1998. https://doi.org/10.1126/science.280.5360.82
  33. M. Fatemi and J. F. Greenleaf, "Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound." Phys. Med, Biol., vol. 45, pp. 1449-1464, 2000. https://doi.org/10.1088/0031-9155/45/6/304
  34. J. Greenleaf, M. Fatemi, G. Silva, and M. Urban, ''Vibroacoustography: The most promising approaches and inferred needs for transducers and arrays," in Proc. IEEE Ultrason, Symp., 2006, pp. 2322-2324.
  35. A. Alizad, D. H. Whaley, R. R. Kinnick, J. F. Greenleaf, and M. Fatemi, "In vivo breast vibro-acoustography: Recent results and new challenges," in Proc, IEEE Ultrason. Symp., 2006, pp. 1659-1662.
  36. A. Alizad, D. H. Whaley, J. F. Greenleaf, and M. Fatemi, "Critical issues in breast imaging by vibro-acoustography," Ultrasonics, vol. 44, pp. 217-220, 2006. https://doi.org/10.1016/j.ultras.2006.06.021
  37. J. Bercoff, M. Tanter, and M. Fink, "Supersonic shear imaging: A new technique for soft tissue elasticity mapping," IEEE Trans. UItrason, Ferroelectr. Freq. Control, vol. 51, no. 4, pp. 396-409, Apr. 2004.
  38. M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L, Gennison, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, "Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging," Ultrasound Med. Biol., vol. 34, no. 9, pp. 1373-1386, Sept. 2008. https://doi.org/10.1016/j.ultrasmedbio.2008.02.002
  39. J. Bercoff, A. Criton, C. C. Bacrie, J. Souquet, M. Tanter, J.-L. Gennisson, T. Deffieux, and M. Fink, "Shear wave elastoqraphy," in Proc, IEEE Ultrason. Symp.. 2008, pp. 321-324.
  40. R. S. Lazebnik, "Tissue strain analytics: Virtual touch tissue imaging and quantification' [Online]. Available: http://www.medical.siemens.com/siemens/sv_SE/gg_us_FBAs/files/misc_downloads/Whitepaper_VirtualTouch,pdf.