Browse > Article

Ultrasound Elasticity Imaging Methods  

Jeong, Mok-Kun (Departments of Electronic and Communication Engineering, Daejin University)
Kwon, Sung-Jae (Departments of Electronic and Communication Engineering, Daejin University)
Abstract
The difference in echogenicity between cancerous and normal tissues is not quite distinguishable in ultrasound B-mode imaging. However, tumor or cancer in breast or prostate tends to be stiffer than the surrounding normal tissue. Thus, imaging the stiffness contrast between the two different tissue types is helpful for quantitative diagnosis, and such a method of imaging the elasticity of human tissue is collectively referred to as ultrasound elasticity imaging. Recently, elasticity imaging has established itself as an effective diagnostic modality in addition to ultrasound B-mode imaging. The purpose of this paper is to present various elasticity imaging methods that have been reported up to now and to describe their principles of operation and characteristics.
Keywords
ARFI; Elastography; SSI; Sonoelastography; SWEI; Vibro-acoustography;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. He and A. McGoron, "Parameter estimation for nonlinear frequency dependent attenuation in soft tissue," Ultrasound Med. Biol., vol. 15, no. 8, pp. 757-763, 1989,   DOI   ScienceOn
2 J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," UItrason. Imaging, vol. 13, pp. 111-134, 1991.   DOI   ScienceOn
3 T. Varghese and J. Ophir, "Enhancement of echo-signal correlation in elastography using temporal stretching," IEEE Trans. Ultrason. Ferroelectr. Freq, Control, vol. 44, no. 1, pp. 173-180, Jan. 1997.   DOI   ScienceOn
4 L. S. Taylor, B. C. Porter, D. J. Rubens, and K. J. Parker, "Three-dimensional sonoelastography: Principles and practices," Phys. Med. Biol.. vol. 45. pp. 1477-1494, 2000.   DOI   ScienceOn
5 K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, "On the feasibility of remote palpation using acoustic radiation force," J. Acoust, Soc. Am., vol. 110, no. 1, pp. 625-634, July 2001.   DOI   ScienceOn
6 M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L, Gennison, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, "Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging," Ultrasound Med. Biol., vol. 34, no. 9, pp. 1373-1386, Sept. 2008.   DOI   ScienceOn
7 J. E. Lindop, G. M. Treece, A. H. Gee, and R. W. Prager, "Estimation of displacement location for enhanced strain imaging," IEEE Trans. Ultrason, Ferroeectr, Freq, Control, vol. 54, no. 9, pp. 1751-1771. Sept. 2007.   DOI
8 F. Kallel, J. Ophir, K. Magee, and T. Krouskop, "Elastcqraphic imaging of low contrast elastic modulus distribution in tissue," Ultrasound Med, Biol., vol. 24, no. 3, pp, 409-425, 1998.   DOI   ScienceOn
9 R. Righetti, F. Kallel, R. J. Stafford, R. E. Price, T. A. Krouskop, J. D. Hazle, and J. Ophir, "Elastographic Characterization of HIFU-induced lesions in canine livers", Ultrasound Med, Biol., vol. 25, no. 7, pp. 1099-1113, 1999.   DOI   ScienceOn
10 J. Ophir and I. Cespedes, "Reduction of image noise in elastography," Ultrason. Imaging, vol. 15, pp. 89-102, 1993.   DOI   ScienceOn
11 T. Shiina, N. Nitta, E. Ueno, and J. C. Bamber, "Real time tissue elasticity imaging using the combined autocorrelation method," J. Med. Uitreson., vol. 29, pp. 119-128, 2002.   DOI
12 J. Ophir and F. Kallel, "A least-squares strain estimator for elastoqraphy," Ultrason. Imaging. vol. 19, pp. 195-208, 1997.   DOI   ScienceOn
13 S. Kaisar Alam, Jonathan Ophir, and E. E. Konofagou, "An adaptive strain estimator for elastoqrapny,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 2, pp. 461-472, Mar. 1998.   DOI   ScienceOn
14 M. O'Donnell, M. A. Lubinski, and S. Y. Emelianov, "Speckle tracking methods for ultrasonic elasticity imaging using shorttime correlation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 1, pp, 82-96, Jan. 1999.   DOI   ScienceOn
15 T. Sato. Y. Yamakoshi, and T. Nakamura, "Nonlinear tissue imaging," in Proc, IEEE Ultrason. Symp., 1986, pp. 889-900.
16 A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, "A timeefficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation," IEEE Trans. Ultrason. Ferroelectr. Frea, Control, vol. 46, no. 5, pp. 1057-1067, Sept. 1999.   DOI   ScienceOn
17 M. K. Jeong and S. J. Kwon, "Enhanced strain imaging using quality measure," J. Acoust, Soc. Kor., vol, 27, no. 3E, pp.84-94, Sept. 2008.   과학기술학회마을
18 Y. Hayakawa, T. Wagai, K. Yosioka, T. Inada, T. Suzuki, H. Yagami, and T. Fujii, "Measurement of ultrasound attenuation coefficient by a multifrequency echo technique-Theory and basic experiments." IEEE Trans. Ultrason. Ferroetectr. Frea. Control, vol. 33, no. 6, pp. 759-764, Nov. 1986.   DOI
19 T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, vol. 20 pp. 260-274, 1998.   DOI   ScienceOn
20 D. Yanwa, T. Jia, and S. Yongchen, "Relations between the acoustic nonlinearity parameter and sound speed and tissue composition." in Proc. IEEE Ultrason. Symp., 1987, pp. 931-934.
21 B. J. Fahey, R. C. Nelson, S. J. Hsu, D. P Bradway, D. M. Dumont, and G. E. Trahey, "In vivo acoustic radiation force impulse imaging of abdominal lesions," in Proc, IEEE Ultrason. Symp., 2007, pp. 440-443.
22 J. Bercoff, A. Criton, C. C. Bacrie, J. Souquet, M. Tanter, J.-L. Gennisson, T. Deffieux, and M. Fink, "Shear wave elastoqraphy," in Proc, IEEE Ultrason. Symp.. 2008, pp. 321-324.
23 R. S. Lazebnik, "Tissue strain analytics: Virtual touch tissue imaging and quantification' [Online]. Available: http://www.medical.siemens.com/siemens/sv_SE/gg_us_FBAs/files/misc_downloads/Whitepaper_VirtualTouch,pdf.
24 A. Alizad, D. H. Whaley, J. F. Greenleaf, and M. Fatemi, "Critical issues in breast imaging by vibro-acoustography," Ultrasonics, vol. 44, pp. 217-220, 2006.   DOI   ScienceOn
25 J. Bercoff, M. Tanter, and M. Fink, "Supersonic shear imaging: A new technique for soft tissue elasticity mapping," IEEE Trans. UItrason, Ferroelectr. Freq. Control, vol. 51, no. 4, pp. 396-409, Apr. 2004.
26 M. Fatemi and J. F. Greenleaf, "Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound." Phys. Med, Biol., vol. 45, pp. 1449-1464, 2000.   DOI   ScienceOn
27 J. Greenleaf, M. Fatemi, G. Silva, and M. Urban, ''Vibroacoustography: The most promising approaches and inferred needs for transducers and arrays," in Proc. IEEE Ultrason, Symp., 2006, pp. 2322-2324.
28 A. Alizad, D. H. Whaley, R. R. Kinnick, J. F. Greenleaf, and M. Fatemi, "In vivo breast vibro-acoustography: Recent results and new challenges," in Proc, IEEE Ultrason. Symp., 2006, pp. 1659-1662.
29 M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, "A finite-element method model of soft tissue response to impulsive acoustic radiation force," IEEE Trans. Ultrason. Ferroelectr, Freq, Control, vol. 52, no. 10, pp. 1699-1712, Oct. 2005.   DOI
30 M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, "Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 53, no. 7, pp. 1300-1313, July 2006.   DOI   ScienceOn
31 M. Fatemi and J. F. Greenleaf, "Ultrasound-stimulated vibroacoustic spectrography," Science, vol. 280, no. 3, pp. 82-85, Apr. 1998.   DOI   ScienceOn
32 K. Nightingale, M. S. Soo, R. Nightingale, E. Bentley, and G. Trahey, "In vivo demonstration of acoustic radiation force impulse imaging in the thyroid, abdomen, and breast," in Proc, IEEE Ultrason. Symp., 2001, pp. 1633-1638.
33 K. Nightingale, M. S. Soo, R. Nightingale, R. Bentley, D. Stutz, M. Palmeri, J. Dahl, and G, Trahey, "Acoustic radiation force impulse imaging: Remote palpation of the mechanical properties of tissue," in Proc. IEEE Ultrason. Symp.. 2002, pp. 1821-1830.
34 L. Sandrin, M. Tanter, S. Catheline, and M. Fink, "Shear modulus imaging with 2-D transient elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 49, no. 4, pp. 426-435, Apr. 2002.
35 B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, "Acoustic radiation force impulse imaging of the abdomen: Demonstration of feasibility and utility," Ultrasound Med. Biol., vol. 31, no. 9, pp. 1185-1198, 2005.   DOI   ScienceOn
36 A. P. Sarvazyan, O. V. Rudenko, S, D. Swanson, J. B, Fowlkes, and S. Y. Emelianov, "Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., vol. 24. no. 9, pp. 1419-1435, 1998.   DOI   ScienceOn
37 S. McAleavey, M. Menon, and D. J. Rubens. "Acoustic radiation force impulse imaging of excised human prostates," in Proc, IEEE Ultrason. Symp., 2000, pp. 1663-1666.
38 M. Fink, L. Sandrin, M. Tanter, S. Catheline, S. Chaffai, J. Bercoff, and J.-L. Gennisson. "Ultra high speed imaging of elasticity: in Proc IEEE Ultrason, Symp., 2002, pp. 1811-1820.
39 K. J. Parker, L. Gao. S. K. Alam, D. Rubens, and R. M. Lerner, "Sonoelasticity Imaging: Theory and applications: in Proc Ultrason. Symp., 1996, pp. 623-628.
40 J. Ophir, S. K. Alam, B. Garra, F. Kallel, Konofagou, T. Krouskop, and T. Varghese, "Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues," J. Eng. Med., vol. 213, no. 3, pp. 203-233, 1999.   DOI   ScienceOn