• Title/Summary/Keyword: ultrasound imaging

Search Result 679, Processing Time 0.025 seconds

A Reconfigurable Analog Front-end Integrated Circuit for Medical Ultrasound Imaging Systems (초음파 의료 영상 시스템을 위한 재구성 가능한 아날로그 집적회로)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.66-71
    • /
    • 2014
  • This paper presents an analog front-end integrated circuit (IC) for medical ultrasound imaging systems using standard $0.18-{\mu}m$ CMOS process. The proposed front-end circuit includes the transmit part which consists of 15-V high-voltage pulser operating at 2.6 MHz, and the receive part which consists of switch and a low-power low-noise preamplifier. Depending on the operation mode, the output driver in the transmit pulser can be reconfigured as the switch in the receive path and thus the area of the overall front-end IC is reduced by over 70% in comparison to previous work. The designed single-channel front-end prototype consumes less than $0.045mm^2$ of core area and can be utilized as a key building block in highly-integrated multi-array ultrasound medical imaging systems.

Age-related change in shear elastic modulus of the thoracolumbar multifidus muscle in healthy Beagle dogs using ultrasound shear wave elastography

  • Tokunaga, Akari;Shimizu, Miki
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.3.1-3.13
    • /
    • 2021
  • Background: Multifidus muscle stiffness decreases in patients with lumbar intervertebral disk herniation; however, age-related changes in humans have not been reported. Objectives: The reliability of ultrasound shear wave elastography in dogs, and changes in the shear elastic modulus of the thoracolumbar multifidus muscle with aging in dogs, were investigated. Methods: Twelve beagle dogs were divided into 2 groups based on the age of onset of intervertebral disk herniation: young (aged not exceeding 2 years; 1.3 ± 0.6 years old, n = 5) and adult (4.9 ± 1.2 years old, n = 7). The shear elastic modulus of the multifidus muscle, from the thirteenth thoracic spine to the fourth lumbar spine, was measured using ultrasound shear wave elastography. The length, cross-sectional area and muscle to fat ratio of the multifidus muscle, and the grade of intervertebral disk degeneration, were assessed using radiographic and magnetic resonance imaging examinations. Results: The length and cross-sectional area of the multifidus muscle increased caudally. In the young group, the shear elastic modulus of the multifidus muscle of the thirteenth thoracic spine was less than that of the third lumbar spine. In the adult group, the shear elastic modulus of the multifidus muscle of first and third lumbar spine was lower than that of the same site in the young group. Conclusions: Ultrasound can be used to measure shear wave elastography of the thoracolumbar multifidus in dogs. If the multifidus muscle stiffness decreases, we should consider age-related change.

Hepatic Angiomyolipoma: Contrast Patterns with SonoVue-enhanced Real-time Gray-scale Ultrasonography

  • Wei, Rui-Xue;Wang, Wen-Ping;Ding, Hong;Huang, Bei-Jian;Li, Chao-Lun;Fan, Pei-Li;Hou, Jun;He, Nian-An
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.493-497
    • /
    • 2012
  • This study was conducted to retrospectively evaluate the pattern of contrast enhancement with SonoVue on gray-scale ultrasonography of hepatic angiomyolipoma (HAML). Imaging features of 33 pathologically proven HAML lesions in 33 patients who underwent baseline ultrasound and contrast-enhanced ultrasonography (CEUS) were assessed retrospectively. All lesions were enhanced in the arterial phase and showed whole-tumor filling in. Thirty-two of 33 (97%) lesions showed early positive enhancement in the arterial phase. Twenty-three of these exhibited isoechoic or hyperechoic features in the portal phase. HAML demonstrate characteristic manifestations with SonoVue-enhanced real-time gray-scale ultrasonography.

Functional beamforming for high-resolution ultrasound imaging in the air with random sparse array transducer (고해상도 공기중 초음파 영상을 위한 기능성 빔형성법 적용)

  • Choon-Su Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • Ultrasound in the air is widely used in industry as a measurement technique to prevent abnormalities in the machinery. Recently, the use of airborne ultrasound imaging techniques, which can find the location of abnormalities using an array transducers, is increasing. A beamforming method that uses the phase difference for each sensor is used to visualize the location of the ultrasonic sound source. We exploit a random sparse ultrasonic array and obtain beamforming power distribution on the source in a certain distance away from the array. Conventional beamforming methods inevitably have limited spatial resolution depending on the number of sensors used and the aperture size. A high-resolution ultrasound imaging technique was implemented by applying functional beamforming as a method to overcome the geometric constraints of the array. The functional beamforming method can be expressed as a generalized beam forming method mathematically, and has the advantage of being able to obtain high-resolution imaging by reducing main-lobe width and side lobes. As a result of observation through computer simulation, it was verified that the resolution of the ultrasonic source in the air was successfully increased by functional beamforming using the ultrasonic sparse array.

Optically transparent ultrasound transducers for combined ultrasound and photoacoustic imaging: A review (초음파-광음향 융합 영상을 위한 투명 초음파 변환기)

  • Shunghun Park;Jin Ho Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.441-451
    • /
    • 2023
  • Ultrasound transducers are an essential component of combined photoacoustic and ultrasound imaging systems and play an important role in image evaluation. However, ultrasound transducers are opaque; therefore, light must bypass the ultrasound transducer to reach the target point to produce a photoacoustic image. Providing different paths for the optical and acoustic signals results in a complicated system design, increasing the system volume. To overcome these problems, an optically Transparent Ultrasound Transducer (TUT) was developed. Unlike conventional opaque ultrasound transducers, optically TUT can be fabricated by a variety of manufacturing methods and they are suitable for use with specific piezoelectric elements and serve various purposes. In this study, a comparative analysis of the results of using Lithium Niobate (LNO), Lead Magnesium Niobate-Lead Titanate (PMN-PT), and Polyvinylidene Difluoride (PVDF), which are materials used in piezoelectric element-based TUT. LNO is a piezoelectric element widely used in TUT, and PMN-PT has been actively studied recently with a higher transmission and reception rate than LNO. Existing TUT have lower ultrasound resolution than photoacoustic resolution, but they have recently been manufacturing focused TUT with high ultrasound resolution using PVDF. A comparative analysis of the production results of these TUT was performed.

An Efficient Motion Estimation and Compensation Method for Ultrasound Synthetic Aperture Imaging (초음파 합성구경 영상을 위한 효율적인 움직임 추정 및 보상 기법)

  • 김강식;황재섭;정종섭;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.87-99
    • /
    • 2002
  • This paper describes a method for overcoming the motion artifacts inherent in synthetic aperture(SA) imaging. based on the investigation results as to the influence of a target motion on synthetic aperture techniques. This method uses a region-based motion compensation approach in which only the axial motion is estimated and compensated for a given region of interest(ROI) under the assumption that the whole ROI moves uniformly The estimated axial motion is calculated with a crosscorrelation(CC) method at the Point where the focused signal has the maximum energy within the ROI. We also presents a method for estimating the axial motion using the autocorrelation(AC) method that is widely used to estimate average Doppler frequency Both computer simulations and in vivo experiments show that the proposed methods can improve greatly the spatial resolution and SNR of ultrasound imaging by implementing the SA techniques for two-way dynamic focusing without motion artifacts. In addition the AC-barred motion compensation method provides almost the same results as the CC-based one, but with a dramatically reduced computational complexity.

Reliability study of the Pectoralis Minor Muscle Thickness Measurement using Rehabilitative Ultrasound Imaging

  • Lim, Ji Young;Lee, Se-Yeong;Jung, Seung-Hwa;Park, Dae-Sung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.2
    • /
    • pp.45-52
    • /
    • 2021
  • PURPOSE: This study examined the imaging procedure of pectoralis minor muscle thickness and assessed the intra- and inter-rater reliability of the muscle thickness measured by two raters using rehabilitative ultrasound imaging (RUSI) in healthy individuals. METHODS: Fifteen participants (aged 21 - 28, seven females, and eight males) were involved in the study. The primary rater palpated the coracoid process and the fourth rib, defined as the width of the index finger lateral to the sternum to avoid breast tissues, and lined the two landmarks. The second examiner checked 1 / 3 (1st point) and 1 / 2 (2nd point) of the line length as measurement points. The two raters obtained right side muscle images of the participants at a standardized sitting position using RUSI with a 7.5 MHz linear transducer at 40mm depth. For intra-rater reliability, the principal rater took three images per point and tried to take one more with an interval. For the inter-rater reliability, the other rater performed the same tasks as the principal rater on the same day. The reliability was analyzed using the intra-class correlation coefficient (ICC), the standard error of the measurement (SEM), and Bland and Altman plots. RESULTS: The reliability at all points was excellent for the same rater (ICC3,1 = .973 - .978, SEM = .042 - .046), and between raters (ICC2,1 = .939 - .959, SEM = .059 - .097). CONCLUSION: These findings show that the RUSI could be reliable for examining the pectoralis minor muscle thickness in healthy individuals at all measurement sites.

Evolution of the synthetic aperture imaging method in medical ultrasound system (초음파진단기 합성구경영상법의 진화)

  • Bae, MooHo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.534-544
    • /
    • 2022
  • Medical ultrasound system has been widely used to visualize the lesion for diagnostics in most medical service site including hospitals and clinics thanks to its advantages such as real time operation, ease of use, safety. Among many signal processing blocks of the system, one of the most important part that governs the image quality is the beamformer, and technologies for this part has been continuously developed in long time. The synthetic aperture imaging method, that is one of the major technologies of beamforming, was introduced to maximize utilizing the information delivered from the patient's body through the probe, and contributed to breakthrough of the image quality since it was introduced in around 1990's, and evolved continuously in decades. This paper reviews and surveys the process of development of this technology and expects future evolution.