• Title/Summary/Keyword: ultrafine particle

Search Result 145, Processing Time 0.024 seconds

Characteristics of spatial distribution of ultrafine particle number concentration on the roads of Nowon-gu, Seoul (서울시 노원구 도로상 극미세입자 오염도 공간분포 특징)

  • Lee, Seung-Bok;Lee, Dong-Hun;Lee, Seung Jae;Jin, Hyoun-Cher;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.7 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • The spatial distributions of air pollutants, in particular, ultrafine particles near traffic congestion roads at urban areas need to reduce human exposure levels for protecting public health. In this study, the number concentrations of ultrafine particles larger than 5 nm were measured every second during driving on the major roads of Nowon-gu, Seoul for 1.6 h using a mobile emission laboratory on October 5, 2010. The ultrafine particle number concentrations ranged from 7,009 to $265,600particles/cm^3$ with an average of $55,570particles/cm^3$, and these levels were comparable to concentrations of ultrafine particles larger than 3 or 7 nm on the arterial roads at urban areas in Los Angeles, USA and Zurich, Switzerland. It was frequently observed that the ultrafine particle number increased rapidly when vehicle speed was accelerated and it decreased sharply when vehicle speed was decelerated. The high peak events of ultrafine particle concentration larger than $200,000particles/cm^3$ were observed seven times during the measurement period. From the three repeated measurements during the short period of 50 min, it was concluded that the ultrafine particle number concentration on the road was significantly time-dependent. This on-road measurement approach can be utilized to manage vehicle-related air pollution in urban.

Urban Aerosol Number Concentration and Scattering Coefficient in Seoul, Korea, during Winter (서울지역 겨울철 대기 에어로졸의 수 농도 및 산란계수 분석)

  • Lee, Hyun-Hye;Kim, Jin Young;Lee, Seung-Bok;Bae, Gwi-Nam;Yum, Seong Soo
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.91-103
    • /
    • 2010
  • Size-segregated number concentration and scattering coefficient of urban aerosols were measured using an SMPS (scanning mobility particle sizer) and a nephelometer, respectively in Seoul, Korea, during the winter season of 2003. The average number concentrations of ultrafine particles (20~100 nm) and accumulation mode particles (100~600 nm) were $2,170\;particles\;cm^{-3}$ and $1,521\;particles\;cm^{-3}$, respectively. The scattering coefficient at the wavelength of 550 nm ranged from $62.6Mm^{-1}$ to $330.1Mm^{-1}$ and average value was $163.4Mm^{-1}$. The peak concentrations of ultrafine particles and accumulation mode particles were simultaneously recorded between 6:00 and 9:00 A.M., indicating the effect of vehicle emissions which are major air pollution sources in the urban atmosphere. On average, the number concentration of ultrafine particles was 1.4 times higher than that of accumulation mode particles, although it was a little higher during the morning peak time. The variation of aerosol scattering coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.g coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.

Spatial Distributions of On-road Ultrafine Particle Number Concentration on Naebu Express Way in Seoul during Winter Season (겨울철 서울 내부순환로 도로상 초미세입자 오염의 공간분포 특징)

  • Woo, Daekwang;Lee, Seung-Bok;Lee, Seung Jae;Kim, Jin Young;Jin, Hyun Chul;Kim, Taesung;Bae, Gwi-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.10-26
    • /
    • 2013
  • To understand the traffic emissions with high temporal and spatial resolutions on road, a mobile laboratory was developed. The objective of this study is to characterize on-road air pollution on Naebu express way surrounding the northern area of Seoul, Korea. We measured the number concentration of ultrafine particles larger than 5 nm and particle size distribution using a condensation particle counter and a fast mobility particle sizer, respectively on 3, 7, and 8 December 2009. The average ultrafine particle number concentration on the Naebu express way excluding tunnels was 126,000 particles/$cm^3$ and 4.2 times higher than that on internal road at Korea Institute of Science and Technology in Seoul, and more than twice higher than that measured on and at the arterial roads of Seoul in previous studies. The maximum ultrafine particle number concentration was observed at the tunnel sections. It was 232,000 particles/$cm^3$ and 1.8 times higher than average ultrafine particle number concentration for the other sections on Naebu express way. The ultrafine particle number concentration on the wider roads with higher traffic volume along the Han River was similar to that in the residential section, probably because of enhanced dilution effect in widely open environment. The size distribution of particles on the Naebu express way was highly fluctuated for a short duration. Ultrafine particles measured at the tunnel showed a bimodal size distribution with mode diameters of ~10 nm and ~50 nm. At the Han riverside section, ~10 nm particles appeared significantly compared with size distribution at the tunnel. This on-road measurement approach can be utilized to manage vehicle-related air pollution in urban area.

Effect of Particle Size on the Solubility and Dispersibility of Endosperm, Bran, and Husk Powders of Rice

  • Lee, Jeong-Eun;Jun, Ji-Yeon;Kang, Wie-Soo;Lim, Jung-Dae;Kim, Dong-Eun;Lee, Kang-Yeol;Ko, Sang-Hoon
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.833-838
    • /
    • 2008
  • Size effects of rice product powders on physical properties including suspension stability were investigated in this study. Endosperm, bran, and husk powders of rice with different size particles were prepared using the pin crusher or the ultrafine air mill. The physical properties of the powders were examined using particle size analysis, scanning electron microscopy, and spectrophotometry. The peak of the volume-weighted particle distribution of ultrafine endosperm particles was at $5.4\;{\mu}m$ whereas those of the bran and the husk appeared at 65 and $35\;{\mu}m$, respectively. Ultrafine particles of the endosperm and the husks dispersed better than larger-sized particles. As time elapsed, the dispersibility decreased, but the ultrafine particles were precipitated at the slowest rate. Our results suggest that ultrafine particles, including future nanosized particles, provide improved solubility and dispersibility resulting in better stability in the food colloidal suspension.

Comparison of Ultrafine Particles Monitored at a Roadside Using an SMPS and a TR-DMPS (SMPS와 TR-DMPS를 이용한 도로변 초미세 입자 모니터링 결과의 비교)

  • Woo, Dae-Kwang;Lee, Seung-Bok;Bae, Gwi-Nam;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.404-414
    • /
    • 2008
  • A Transient Differential Mobility Particle Spectrometer (TR-DMPS) with a short response time was recently developed to monitor high concentration of ultrafine particles emitted from vehicles. To investigate the availability of the TR-DMPS for monitoring transient roadside aerosols, the number size distribution of ultrafine particles was monitored at the Cheongnyangni roadside in Seoul on March 23, 2007 together with a Scanning Mobility Particle Sizer (SMPS). The roadside aerosols were monitored every 5 min and 0.1 sec by using the SMPS and the TR-DMPS, respectively. The concentration of ultrafine particles at the roadside was highly fluctuated for a short duration. From the comparison of particle number concentrations and size distributions between two instruments, it was confirmed that the SMPS provided fairly good time-averaged number size distribution although it did not follow rapid change of particle number concentration at the roadside. The TR-DMPS quickly responded to a rapid change of particle number concentration due to abrupt traffic flow. However, the TR-DMPS frequently showed electrical noise events, resulting in underestimated particle contamination. A more stable operation of the TR-DMPS is needed in application of roadside aerosol monitoring.

Evaluation of temperature effects on brake wear particles using clustered heatmaps

  • Shin, Jihoon;Yim, Inhyeok;Kwon, Soon-Bark;Park, Sechan;Kim, Min-soo;Cha, YoonKyung
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.680-689
    • /
    • 2019
  • Temperature effects on the generation of brake wear particles from railway vehicles were generated, with a particular focus on the generation of ultrafine particles. A real scale brake dynamometer test was repeated five times under low and high initial temperatures of brake discs, respectively, to obtain generalized results. Size distributions and temporal patterns of wear particles were analyzed through visualization using clustered heatmaps. Our results indicate that high initial temperature conditions promote the generation of ultrafine particles. While particle concentration peaked within the range of fine sized particles under both low and high initial temperature, an additional peak occurred within the range of ultrafine sized particles only under high initial temperature. The timing of peak occurrence also differed between low and high initial temperature conditions. Under low initial temperature fine sized particles were generated intensively at the latter end of braking, whereas under high initial temperature both fine and ultrafine particles were generated more dispersedly along the braking period. The clustered correlation heatmap divided particle sizes into two groups, within which generation timing and concentration of particles were similar. The cut-off point between the two groups was approximately 100 nm, confirming that the governing mechanisms for the generation of fine particles and ultrafine particles are different.

Emission Characteristics of Ultrafine particles According to Fuel Injection Type in Gasoline and LPG Vehicle (휘발유와 LPG 자동차의 연료분사방식에 따른 극미세입자 배출 특성)

  • Park, Kyoung-Gyun;Kwon, Sang-Il;Lee, Woo-Suk;Hong, Ji-Hyung
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.184-189
    • /
    • 2009
  • Recently, ultrafine particles emitted from internal combustion engine is main concern because of its well known adverse health effects. So Europe decided to start the regulation about diesel engine particle number emissions. The nanoparticles smaller than 50nm in diameter have the ability to penetrate deep into interstitial tissue of luge, where they may cause severe respiratory inflammation and acute pulmonary toxicity. Recent studies have showed that spark ignition engines emit particles number concentration comparable to those from diesel engines with DPF under high load and rich mixture conditions, including cold starts and acceleration. So this study investigated emission characteristics of ultrafine particles according to fuel injection type in gasoline vehicles and LPG vehicles. The test vehicles were tested on CVS-75 and NEDC vehicle test mode using the chassis dynamometer, CPC system applied as a particle measuring instrument at the end of dilution tunnel. As a result, the correlation between fuel injection type and particulate emission was determined. GDI vehicle emitted 10 times higher particles than PFI vehicles, and compared to Mixer and LPGI type LPG vehicle, LPLI vehicle emitted particles high.

  • PDF

Application of Nanotechnology to Korean Black-Red Ginseng: Solubility Enhancement by Particle Size Reduction

  • Park, Seul-Ki;Kim, Yoon-Kyung;Youn, Hyung-Sun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • In order to investigate whether the particles reduced to almost nano grade might affect the chemical and physical properties of organic materials, whole Korean Black-Red Ginseng was pulverized into almost nano size and then ginsenosides, minerals, carbohydrates, lipids and proteins in the ultrafine particles were compared with those in the regular particles as control. The mean size of the ultrafine particles was in the 350 nm range, while that of the regular particles was $127{\mu}m$. More ginsenosides, minerals, carbohydrates, lipids and proteins were detected in the ultrafine particles than in the regular particles. Interestingly, more lipids from the ultrafine particles dissolved in the water than those from the regular particles in the ethanol. Absorption and transport of carbohydrate, lipid or antioxidant activity across the intestinal wall using everted intestine sacks of mice was also enhanced by particle size reduction at the almost nano scale. More cytotoxic effect against hepatoma cell growth by ultrafine particles was also found. These results could be used as the basic data for the understanding and evaluation of the effects of organic nanomaterials on the human health.

Ultrafine Particle Toxicities, Current Measurement Techniques and Controls (Ultrafine Particle의 독성, 측정방법 및 관리)

  • Lee, Su-Gil;Kim, Seong-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.203-215
    • /
    • 2010
  • This study is an overview of toxicities and measurement techniques of ultrafine particles (UFPs), and their exposure controls. UFPs are ubiquitous in many working situations. Exposure to UFPs is possibly causing adverse health symptoms including cardio-respiratory disease to humans. In order to measure exposure levels of airborne UFPs, there are current available measurement guidelines, instruments and other techniques (i.e. contour mapping, control banding). However, these risk assessment techniques including measurement techniques, controls and guidelines are dependent on background levels, metrics (e.g. size, mass, number, surface area, composition), environmental conditions and controls. There are no standardized measurement methods available and no generic and specific occupational exposure standards for UFPs. It is thought that there needs to be more effort to develop Regulations and Exposure Standards for generic UFPs should be based on more exposure data, health surveys, toxicological data and epidemiological data. A carefully considered hierarchy of controls can also reduce the maximum amount of airborne UFPs being emitted from diverse sources in industries.

Electric Collection Filter for Ultrafine Dust Removal (초미세먼지 제거를 위한 전기집진 필터에 관한 연구)

  • Kim, Yong Sun;Ko, Sang Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.40-45
    • /
    • 2022
  • In recent years, indoor air pollution has become a crucial environmental problem. Hence, the purification of indoor air is an important issue. Typical physical filters show relatively high dust collection efficiency at a dust particle size of more than 5.0 ㎛ but extremely low efficiency at an ultrafine size of less than 2.5 ㎛. In this study, an electric field filter was proposed to capture ultrafine dust with a size of less than 5.0 ㎛. Simulation results showed that the electric field filter effectively removed ultrafine dust. In addition, sufficient dust collection efficiency was obtained even with a simple plate-shaped filter without bending the Chevron filter.