Browse > Article

Ultrafine Particle Toxicities, Current Measurement Techniques and Controls  

Lee, Su-Gil (Discipline of Public Health, University of Adelaide)
Kim, Seong-Soo (Department of Environmental Administration, Catholic University of Pusan)
Publication Information
Journal of Korean Society of Occupational and Environmental Hygiene / v.20, no.3, 2010 , pp. 203-215 More about this Journal
Abstract
This study is an overview of toxicities and measurement techniques of ultrafine particles (UFPs), and their exposure controls. UFPs are ubiquitous in many working situations. Exposure to UFPs is possibly causing adverse health symptoms including cardio-respiratory disease to humans. In order to measure exposure levels of airborne UFPs, there are current available measurement guidelines, instruments and other techniques (i.e. contour mapping, control banding). However, these risk assessment techniques including measurement techniques, controls and guidelines are dependent on background levels, metrics (e.g. size, mass, number, surface area, composition), environmental conditions and controls. There are no standardized measurement methods available and no generic and specific occupational exposure standards for UFPs. It is thought that there needs to be more effort to develop Regulations and Exposure Standards for generic UFPs should be based on more exposure data, health surveys, toxicological data and epidemiological data. A carefully considered hierarchy of controls can also reduce the maximum amount of airborne UFPs being emitted from diverse sources in industries.
Keywords
ultrafine particles (UFPs); exposure; toxicities; measurement methods; controls;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Mavon A, Miquel C, Lejeune O, Payre B, Moretto P. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol. 2007; 20(1): 10-20   DOI   ScienceOn
2 Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology. 2004b; 16: 437-445.   DOI   ScienceOn
3 Tickner J, Friar J, Creely KS, Cherrie JW, Pryde DE, Kingston J. The development of the EASE model. Ann Occup Hyg. 2005; 49 (2): 103-110   DOI   ScienceOn
4 Brouwer DH, Gijsbers JHJ, Lurvink MWM. Personal exposure to ultrafine particles in the workplace: Exploring sampling techniques and strategies. Ann Occup Hyg. 2004; 48(5): 439-453   DOI   ScienceOn
5 Heitbrink WA, Evans DE, Peters TM, Slavin TJ. The characterization and mapping of very fine particles in an engine machining and assembly facility. J Occup Environ Hyg. 2007; 4:341-351   DOI   ScienceOn
6 Janjua NR, Mogensen B, Andersson AM, Petersen JH, Henriksen M, Skakkebaek NE, Wulf CH. Systemic absorption of the sunscreens benzophenone-3, octyl-Methoxycinnamate, and 3-(4-Methyl-Benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans. Journal of Investigative Dermatology. 2004; 123: 57-61   DOI   ScienceOn
7 Hering SV, Stolzenburg MR, Quant FR, Oberreit DR, Keady PB. A laminar-flow, Water-based Condensation Particle Counter (WCPC). Aerosol Sci Technol. 2005; 39: 659-672   DOI   ScienceOn
8 Kaur A, Clark RDR, Walsh PT, Arnold SJ, Colvile RN. Nieuwenhuijsen MJ. Exposure visualization of ultrafine particle counts in a transport microenvironment. Atmos Environ. 2006; 40: 386-398   DOI   ScienceOn
9 Konstandopoulos AG, Zarvalis D, Papaioannou E, Vlachos ND, Boretto G, Pidria MF, Faraldi P, Piacenza O, Prenninger P, Cartus T, Schreier H, Brandstatter W, Wassermayr C, Lepperhof G, Scholz V, Luers B, Schnitzler J, Claussen M, Wollmann A, Maly M, Tsotridis G, Vaglieco BM, Merola SS, Webster D, Bergeal D, Gorsmann C, Oberdorster H, Fino D, Russo N, Saracco G, Specchia V, Moral N, D'anna A, D'alessio A, Zahoransky R, Laile E, Schmidt S, Ranalli M. 2004. The diesel exhaust aftertreatment(DEXA) cluster, a systematic approach to diesel particulate emission control in Europe. SAE Tech Paper No 2004-01-0694(SP-1861).
10 International Commission on Radiological Protection. 1994. Human Respiratory Tract Model for Radiological Protection. International Commission on Radiological Protection Publication66${\ast}{\ast}$. Oxford. Pergamon: Elsevier Science Ltd.
11 HSE. 2004a. Nanoparticles: An Occupational Hygiene Review. London: Health and Safety Executive (HSE). UK. URL: www.hse.gov.au/resaerch/rrhtm/rr274.htm
12 HSE. 2004b. Primary regulator of health and safety in British industry; Royal Society / Royal Academy of Engineering report 'Nanoscienceandnanotechnologies'. Health and Safety Executive (HSE). UK. URL: www.nanotec.org.uk/final report.htm
13 Evans DE, Heitbrink WA, Slavin TJ, Peters TM. Ultrafine and respirable particles in an automotive grey iron foundry. Ann Occup Hyg. 2008; 52(1): 9-21
14 Cheng YH, Chao YC, Wu CH, Tsai CJ, Uang SN, Shih TS. Measurements of ultrafine particl concentrations and size distribution in an iron foundry. J Hazardous Materials. 2008; 158: 124-130   DOI   ScienceOn
15 Dennekamp M, Howarth S, Dick CA, Cherrie JW, Donaldson K, Seaton A. Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occup Environ Med. 2001; 58: 511-516   DOI   ScienceOn
16 Donaldson K. 2004. The Toxicology of Airborne Nanoparticles. Proceedings of the First International Symposium on Occupational Health Implications of Nanomaterials. Health and Safety Laboratory (HSL). October 2004; 12-14
17 Elihn K, Berg P. Ultrafine particle characteristics in seven industrial plants. Ann Occup Hyg. 2009; 53(5): 475-484.   DOI   ScienceOn
18 Faux SP, Tran CL, Miller BG, Jones AD, Monteiller C, Donaldson K. In vitro Determinants of Particulate Toxicity: The Dose Metric for Poorly Soluble Dusts. HSE Research Report. 2003; 154
19 Ferin JGO, Penney DP. Pulmonary retention of ultrafine and fine particles in Rats. American Journal of Respiratory Cell and Molecular Biology. 1992; 6: 535-542   DOI   ScienceOn
20 ACGIH, 2001, Industrial Ventilation: A manual of Recommended Practice. American Conference of Governmental Industrial Hygiesists. Ohio. USA.
21 Andersson L, Bryngelsson IL, Ohlson CG, Naystrom P, Lilja BG, Westberg H. Quartz and dust exposure in Sweden iron foundries. J Occup Environ Hyg. 2009; 6: 9-18   DOI
22 Suwa T, Hogg JC, Quinlan KB, Ohgami A, Vincent R, van Eeden SF. Particulate air pollution induces progression of atherosclerosis. Am Coll Cardiol. 2002; 39: 943-945   DOI
23 Zhao Y, Hu M, Slanina S, Zhang Y. Chemical compositions of fine partiuculate organic matter emitted from chinese cooking. Environ Sci technol. 2007; 41: 99-105   DOI   ScienceOn
24 Zimmer AT, Maynard A.D. Investigation of the aerosols produced by a high-speed, hand-held grinder using various substrates. Annals of Occupational Hygiene. 2002; 46(8): 663-672   DOI   ScienceOn
25 Thorpe A. Assessment of personal direct-reading dust monitors for the measurements of airborne inhalable dust. Ann Occup Hyg. 2007; 51(1): 97-112
26 Tinkle SS, Antonini JM, Rich BA, Robert JR, Salmen R, DePree K, Adkin EJ. Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect. 2003; 111(9): 1202-1208   DOI   ScienceOn
27 Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet. 1995; 345: 176-78.   DOI   ScienceOn
28 Seipenbusch M, Binder A, Kasper G, Temporal evolution of nanoparticle aerosols in workplace exposure. Ann Occup Hyg. 2008; 52(8): 707-716   DOI   ScienceOn
29 Sen D, Wolfson H, Dilworth M. Lead exposure in scaffolders during refurbishment construction activity-an observational study. Occupational Medicine. 2002; 52: 49-54   DOI   ScienceOn
30 Tammet H, Mirme A, Tamm E. Electrical aerosol spectrometer of Tartu University. Atmos Res. 2002; 62: 315-324   DOI   ScienceOn
31 Peters G. 2004. Risk Evaluation & Control: Current Perspective. Proceedings of the First International Symposium on Occupational Health Implications of Nanomaterials. 12-14 October 2004. Health and Safety Laboratory (HSL).
32 Peters TM, Heitbrink WA, Evans DE, Slavin TJ, Maynard AD. The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility. Am Occup Hyg. 2006; 50(3): 249-257
33 Peters TM, Elzey S, Johnson R, Park H, Grassian VH, Maher T, O'Shaughnessy P. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J Occup Environ Hyg. 2009; 6: 73-81   DOI
34 PHED. 1992. Pesticide Handlers Exposure Database. version 1.1. U.S. EPA. Health and Welfare Canada, National Agricultural Chemicals Association. Versar Inc. Springfield.
35 Poet TS, McDougal JN. 2002. Skin absorption and human risk assessment. Chemico-Biological Interactions 140: 19-34.   DOI   ScienceOn
36 Ramachandran G, Paulsen D, Watts W, Kittelson D. Mass, surface area and number metrics in diesel occupational exposure assessment. J Environ Monit. 2005; 7: 728-735   DOI   ScienceOn
37 Oberdorster G, Ferin J, Lehnert BE. Correlation Between Particle-Size, in-vivo Particle Persistence, and Lung Injury. Environmental Health Perspectives. 1994; 102(S5): 173-179   DOI
38 Paik SY, Zalk DM, Swuste P. Application of a pilot control banding tool for risl level assessment and control of nanoparticle exposures. Ann Occup Hyg. 2008; 52 (6): 419-428   DOI   ScienceOn
39 Oberdorster G. 2000. Toxicology of ultrafine particles: in vivo studies. Phil Trans Roy Soc London. Series A 358: 2719-2740   DOI   ScienceOn
40 Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder ACP. 2000. Acute Pulmonary Effects of Ultrafine Particles in Rats and Mice. Health Effects Institute Report #96.
41 NOHSC. 1997. Predictive Exposure Modelling: Assessment of Respiratory and Dermal Exposures to Ethyl Parathion and Methyl Parathion in Airblast Application in Orchards. National Occupational Health and Safety Commission. Worksafe Australia, AGPS Canberra. URL: www.apvma.gov.au/chemrev/downloads/parathionmethyl_ohs.pdf
42 Oberdorster G, Ferin R, Gelein J, Soderholm SC, Finkelstein J. Role of the alveolar macrophage in lung injury-studies with ultrafine particles. Environ Health Perspect. 1992; 97: 193-199   DOI
43 NIOSH. 2006. Approaches to Safe Nanotechnology: An Information Exchange with NIOSH. National Institute for Occupational Safety and Health. Centres for Disease Control and Prevention, Department of Health and Human Services.
44 Lee SG, Pisaniello D, Tkaczuk M, Edwards J. Chemical gloves performance: A case study on malathion use in Mediterranean fruit fly control. J Occup Health Safety-Aust NZ. 2009b; 25(2): 129-135.
45 Nanoforum. 2004. The European strategy for nanotechnology, The Commission Communication ' Towards a European Strategy for nanotechnology' . URL: www.cordis.lu/nanotechnology/src/communication/htm
46 Ness S A. 1994. Surface and Dermal Monitoring for Toxic Exposures. NewYork, Van Nostrand Reinhold. An Internatonal TYhomson Publishing Company
47 Morawska L, Wang H, Ristovski Z, Jayaratne ER, Cheung HC, Ling X, He C. JEM Spotlight: Environmental monitoring of airborne nanoparticles. J Environ Moni. 2009; 11: 1758-1773   DOI   ScienceOn
48 Morawska L, Moore MR, Ristovski Z. 2004. Health Impacts on Ultrafine Particles. Environment Standards Branch. Department of the Environment and Heritage. Commonwealth of Australia. Canberra. ACT. Australia. ISBN 0642550557.
49 Long T, Saleh N, Tilton R, Lowry GV, Veronesi B. Titanium dioxide (P25) produces oxidative stress in immortalized brain microglia (BV2): Implication of nanoparticle neurotoxicity. Environ Sci Technol. 2006; 40 (14): 4346-4352   DOI   ScienceOn
50 Lee S, Liu X, Deemer A, Sanderson B, Pisaniello D. 2009a. Ultrafine Particle Emissions and Exposure Measurements in South Australian Workplaces-A Pilot Study. AIOH 27thAnnual Conference .5-9 December 2009 .Canberra. ACT. Australia.
51 Lee SG, Lee NW. A development on assessment method of PVC gloves used in pest control program. J Korean Society of Safety. 2006; 21(3): 53-58   과학기술학회마을
52 Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts, A, Kreyling W, Cox C. Extrapulmonary translocation of ultrafine carbon particles following whole body inhalation exposure of rats. Journal of Toxicology and Environmental Health A. 2002; 65(20): 1531-1543   DOI   ScienceOn
53 International Organization for Standardization. 2007. Workplace Atmospheres-Ultrafine, Nanoparticles and Nono-structured Aerosols-Inhalation Exposure Characterization and Assessment. Technical Report. International Organization for Standardization(ISO/TR 27628: 2007(E)), Switzerland.
54 HSE. 2005. Control of Substances Hazardous to Health. 5th edition. Approved Code of Practice and Guidance(L5). HSE Books. ISBN 9780717629817
55 Baveye P. Aggregation and toxicology of titanium dioxide nanoparticles. Environ Health Perspec. 2008; 116 (4): A 152
56 Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles II. Influence of particle surface area on inflammation and clearance. Inhalation Toxicology. 2000; 12: 1113-1126   DOI   ScienceOn
57 Van-Wendel-De-Joode B, Brouwer DH, Vermeulen R, Van Hemmen JJ, Heederik D, Kromhout H. DREAM; A method for semi-quantitative dermal exposure assessment. Ann Occup Hyg. 2003; 47 (1): 71-87   DOI   ScienceOn
58 Vermeulen R, Stewart P, Kromhout H. Dermal exposure assessment in occupational epidemiologic research. Scand J Work Environ Health. 2002; 28:371-385   DOI   ScienceOn
59 Zalk DM, Paik SY, Swuste P. Evaluating the control banding nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. J Nanopart Res. 2009; 11: 1685-1704.   DOI   ScienceOn
60 Ryman-Rasmussen JP, Riviere JE, Monterio-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol. 2007; 127: 143-153   DOI   ScienceOn
61 Oberdorster G. 2004a. Inhaled Nano-sized Particles: Potential Effects and Mechanisms. Proceedings of the First International Symposium on Occupational Health Implications of Nanomaterials. 12-14 October 2004. Health and Safety Laboratory (HSL).
62 Ostiguy C, lapointe G, Menard L. 2008. Health Effects of Nanoparticles. Report R-589. Second Edition, IRRST-Communication Division. Quebec. Canada. URL:www.irsst.qc.ca
63 Maynard AD. Experimental determination of ultrafine TiO2 de-agglomeration in surrogate pulmonary surfactant - preliminary results. Ann Occup Hyg. 2002; 46: 197-202   DOI   ScienceOn
64 Oberdorster G. Pulmonary Effects of inhaled ultrafine particles. International Archieves of Occupational and Environmental Health. 2001; 74 (1): 1-8.
65 NIOSH. 2009. Approaches to Safe Nanotechnology; Managing the Health and Safety Concerns Associated with Engineered Nanomaterials. Department of Health and Human Services. National Institute for Occupational Safety and Health. DHHS(NIOSH) Publication No. 2009-125.
66 NIOSH. 2008a. NIOSH Nanotechnology Field Research Effort, National Institute for Occupational Safety and Health. URL:www.cdc.gov/niosh/docs/2008-121/
67 Mordas G, Manninen HE, Petaja T, Aalto PP, Hameri K, Kulmala M. On Operation of the Ultra-Fine Water-Based CPC TSI 3786 and comparison with other TSI Models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007). Aerosol Sci Technol. 2008; 42: 152-158   DOI   ScienceOn
68 Maynard AD, Kuempel ED. Airborne nanostructured particles and occupational health. J Nanoparticle Res. 2005; 7(28): 587-614   DOI
69 Mark D, 2004. Control of Nanoparticles, Proceedings of the First International Symposium on Occupational Health Implications of Nanomaterials. 12-14 October 2004. Health and Safety Laboratory (HSL).
70 Matson U, Ekberg LE, Afshari A. Measurement of ultrafine particles, A comparison of two handheld condensation particle counters. Aerosol Science and Technology. 2004; 38: 487-495   DOI   ScienceOn
71 Lida K, Stolzenburg MR, McMurry P, Smith JN, Quant FR, Oberreit DR, Keady PB, Eiguren-Fernandez A, Lewis GS, Kreisberg NM, Hering SV. An ultrafine, Water-Based Condensation Particle Counter and its evaluation under field conditions. Aerosol Sci Technol. 2008; 42: 862-871   DOI   ScienceOn
72 Lee S, Obendorf SK. Statistical model of pesticides penetration through woven work clothing fabrics. ArchEnvironContamToxicol.2005; 49: 266-273   DOI   ScienceOn
73 Lison D, Lardot C, Huaux F, Zanetti G, Fubini B. Influenece of particle surface area on the toxicity of insoluble manganese dioxide dust. Archieves of Toxicology. 1997; 71(12): 725-729   DOI   ScienceOn
74 Liu X, Lee S, Pisaniello D, Jankewicz G, Sanderson B. 2009. Measurement of Fine and Ultrafine Particle Exposure in an Iron Foundry in South Australia. AIOH 27th Annual Conference. 5-9 December 2009. Canberra. ACT. Australia.
75 Lee MH, McClellan WJ, Cnadela J, Andrews D, Biswas P. Reduction of nanoparticle exposure to welding aerosols by modification of the ventilation system in a workplace. J Nanoparticle Research 2007; 9: 127-136.
76 Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacology and Applied Skin Physiology. 1999; 12: 247-256   DOI
77 Lee K, Mukund R. Filter Collection in 'Aerosol measurement and principles, techniques and applications', New York: John Wiley & Sons. 2001. p.197-228
78 Hillamo R, Makela T, Kerminen VM. Electrical Low Pressure Impactor(ELPI) in Atmospheric Aerosol Studies. Finnish Meteorological Institute. Helsinki Finland. 2002
79 Jortner J. Rao CNR. Nanostructured advanced materials; Perspectives and directions. Pure and Applied Chemistry. 2002; 74: 1491-1506   DOI   ScienceOn
80 HSL. 2005. Nanomaterials-A risk to health at work? Proceedings of the First International Symposium on Occupational Health Implications of Nanomaterials. 12-14 October 2004. Health and Safety Laboratory(HSL). Edited by the Health and Safety Executive(HSE) in the UK and the US National Institute for Occupational Safety and Health(NIOSH).
81 Heitbrink WA, Evans DE, Ku BK, Maynard AD, Slavin TJ, Peters TM. Relationships among particle number, surface area, and respirable mass concentrations in automotive engiene manufacturing. J Occup Environ Hyg. 2009; 6: 19-31
82 Gaggeler HW, Baltensperger U, Emmenegger M, Jost DT, Schmidt-Ott A, Haller P, Hofmann M. The epiphaniometer, a new device for continuous aerosol monitoring. J Aerosol Sci. 1989; 20: 557-564   DOI   ScienceOn
83 Harford A., Edwards J, Priestly B, Wright P. Current OHS best practices for the Australian Nanotechnology Industry: A position paper by the NanoSafe Australia Network. Journal of Occupational Health and Safety-Aust NZ. 2007; 23(4): 315-331
84 He C, Morawska L, Taplin L. Particle emission characteristics of office printers. Environ Sci Technol. 2007; 41: 6039-6045   DOI   ScienceOn
85 Bruske-Hohlfeld I, Peters A, Wichmann HE. 2004. Epidemiology of Nanoparticles. Compte-rendu du First International Symposiumon Occupational Health Implications of Nanomaterials. 12 to 14 October 2004. Buxton, Great-Britain. Health and Safety Laboratory(HSL). Oct 2004; 53-58
86 Biswas S, Fine P, Geller MD, Hering SV, Sioutas C. Performance evaluation of a recently developed Water-Based Condensation Particle Counter. Aerosol Sci Technol. 2005; 39: 419-427   DOI   ScienceOn
87 Bowman A, Maibach HI. Percutaneous absorption of organic solvents. Int J Occup Environ Health. 2000; 6: 93-95   DOI