• Title/Summary/Keyword: ultrafast

Search Result 157, Processing Time 0.023 seconds

Analyses of Laser Induced Demagnetization and Remagnetization in Carbon Doped FePt Thin Films (탄소가 도핑 된 FePt 박막에서의 펨토 초 펄스 레이저에 의한 자기 소거와 회복 분석)

  • Song, Hyon-Seok;Ko, Hyun Seok;Hong, Jung-Il;Shin, Sung-Chul;Lee, Kyeong-Dong;Park, Byong-Guk
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.39-42
    • /
    • 2015
  • After preparing carbon-doped FePt films by dc magnetron sputtering, we observed ultrafast demagnetization and its recovery by means of a time-resolved magneto-optical Kerr effect technique. We confirm that the degree of $L1_0$ ordering is decreased and coercivity is changed, as the carbon concentration increases. All samples are demagnetized within ~5 ps after the femtosecond laser pulse heated the sample. Interestingly, ultrafast relaxation time, which indicates fast magnetization recovery, increases as the carbon concentration increases due to the low spin-orbit coupling of carbon.

Effect of Platform Screen Door on fire in the subway station (스크린도어가 설치된 지하철 승강장의 화재유동 전산 수치 모사를 이용한 스크린도어의 화재 영향 연구)

  • Jang, Yong-Jun;Jung, Woo-Sung;Park, Won-Hee;Kim, Hag-Beom
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1337-1345
    • /
    • 2007
  • The present study is a basic investigation for systematically proceeding disaster prevention studying the effect of platform screen door in case of fire at the subway station. In the paper, the characteristics of screen door were surveyed and described. The fully closed platform screen door and the island type of subway station were employed for simulation-study. Numerical simulations of fire driven flow at the subway station with platform screen door were performed with commercial fire CFD code. For analyzing of the effect of platform screen door, the fire simulations with and without the platform screen door were compared. For the fire location, the one is located on the platform and the other case on the railway. The Ultrafast model was taken as fire growth scenario. The maximum heat release rate was 10MW. The propagated time of the heat and smoke to stairs was within 4 minute when the fire is located on the platform. However the heat and smoke propagation was block off by screen door when the fire is located on the railway.

  • PDF

Real-Time Determination of Relative Position Between Satellites Using Laser Ranging

  • Jung, Shinwon;Park, Sang-Young;Park, Han-Earl;Park, Chan-Deok;Kim, Seung-Woo;Jang, Yoon-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.351-362
    • /
    • 2012
  • We made a study on real-time determination method for relative position using the laser-measured distance data between satellites. We numerically performed the determination of relative position in accordance with extended Kalman filter algorithm using the vectors obtained through nonlinear equation of relative motion, laser simulator for distance measurement, and attitude determination of chief satellite. Because the spherical parameters of relative distance and direction are used, there occur some changes in precision depending on changes in relative distance when determining the relative position. As a result of simulation, it was possible to determine the relative position with several millimeter-level errors at a distance of 10 km, and sub-millimeter level errors at a distance of 1 km. In addition, we performed the determination of relative position assuming the case that global positioning system data was not received for long hours to see the impact of determination of chief satellite orbit on the determination of relative position. The determination of precise relative position at a long distance carried out in this study can be used for scientific mission using the satellite formation flying.

Fabrication of Boron-Doped Activated Carbon for Zinc-Ion Hybrid Supercapacitors (아연-이온 하이브리드 슈퍼커패시터를 위한 보론 도핑된 활성탄의 제조)

  • Lee, Young-Geun;Jang, Haenam;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.458-464
    • /
    • 2020
  • Zinc-ion hybrid supercapacitors (ZICs) have recently been spotlighted as energy storage devices due to their high energy and high power densities. However, despite these merits, ZICs face many challenges related to their cathode materials, activated carbon (AC). AC as a cathode material has restrictive electrical conductivity, which leads to low capacity and lifetime at high current densities. To overcome this demerit, a novel boron (B) doped AC is suggested herein with improved electrical conductivity thanks to B-doping effect. Especially, in order to optimize B-doped AC, amounts of precursors are regulated. The optimized B-doped AC electrode shows a good charge-transfer process and superior electrochemical performance, including high specific capacity of 157.4 mAh g-1 at current density of 0.5 A g-1, high-rate performance with 66.6 mAh g-1 at a current density of 10 A g-1, and remarkable, ultrafast cycling stability (90.7 % after 10,000 cycles at a current density of 5 A g-1). The superior energy storage performance is attributed to the B-doping effect, which leads to an excellent charge-transfer process of the AC cathode. Thus, our strategy can provide a rational design for ultrafast cycling stability of next-generation supercapacitors in the near future.

The Study on Fire Phenomena in The Deeply Underground Subway Station (대심도 지하역사에서의 화재현상 연구)

  • Jang, Yong-Jun;Kim, Hag-Beom;Lee, Chang-Hyun;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1773-1780
    • /
    • 2008
  • When the fire occur in the deeply underground subway station, the difficulties of passenger evacuation are expected because of many stairs to the exit. In this study, SOONGSIL-University station (7 line, 47m depth) is the one of the deepest subway stations of the each line in the Seoul metro. The numerical computational-simulation was performed for the fire driven flow in the subway station. Hot and smoke flow was analyzed from the simulation results. The proper plan of evacuation against fire was considered through the results. The fire driven flow was simulated using FDS code in which LES method was applied. The Heat Release Rate was 10MW and the ultrafast model was applied for the growing model of the fire source. The proper mesh size was determined from the characteristic length of fire size. The parallel computational method was employed to compute the flow and heat eqn's in the meshes, which are about 10,000,000, with 6cpu of the linux clustering machine.

  • PDF

Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy

  • Kim, Hyeong-Mook;Park, Jaeheung;Noh, Hee Chang;Lim, Manho;Chung, Young Keun;Kang, Youn K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.587-596
    • /
    • 2014
  • A new ${\pi}$-stacked donor-acceptor (D-A) system, [Ru(1-([2,2'-bipyridine]-6-yl-methyl)-3-(2-cyclohexa-2',5'-diene-1,4-dionyl)-1H-imidazole)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (ImQ_T), has been synthesized and characterized. Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2"-terpyridine)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (TQ_T), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through ${\pi}$-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitals-to-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and $Q^-$ state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.

A Study on the Design of FFT Processor for UWB Ultrafast Wireless Communication Systems (UWB 초고속 무선통신 시스템을 위한 FFT 프로세서 설계에 관한 연구)

  • Lee, Sang-Il;Chun, Young-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2140-2145
    • /
    • 2008
  • We design and synthesize a 128-point FFT processor for multi-band OFDM, which can be applied to a UWB transceiver. The structure of a 128-point FFT processor is based on a Radix-2 FFT algorithm and a R2SDF pipeline architecture. The algorithm is efficiently modeled in VHDL and the result is simulated using Modelsim. Finally, they are synthesized on Xilinx Vertex-II FPGA, and an operational frequency of 18.7MHz has been obtained. It is expected that the proposed 128-point FFT processor can be applied to an entire FFT block as one of parallel processed FFTs. In order to obtain the enhanced maximum frequency of operation, we design the FFT module consisting of four 128-point FFT processors for parallel process. As a result, we achieve the performance requirement of computing the FFT module in multi-band OFDM symbol timing in 90nm ASIC process.

The Ability of Muscle Functional MRI to Detect the Slight Effect of Exercise on Trunk Muscle Activity

  • Tawara, Noriyuki
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2022
  • Purpose: In this study, we provide a way to assess even a slight effect of exercise on trunk-muscle activity. Materials and Methods: Seven healthy male participants (mean age, 24.7 ± 3.2 years; height, 171.2 ± 9.8 cm; and weight, 63.8 ± 11.9 kg) performed 15 sets of an exercise with 20 repetitions of 90° hip and right-knee flexion while lying supine. The exercise intensity was measured using the 10-point Rating of Perceived Exertion Scale after the first and 15th sets of exercises. Although cross-sectional areas and functional T2 mapping using ultrafast imaging (fast-acquired muscle functional magnetic resonance imaging, fast-mfMRI) have been proposed for imaging to evaluate exercise-induced muscle activity in real time, no previous studies have reported on the evaluation of trunk-muscle activity using functional T2 mapping. As a method for assessing trunk-muscle activity, we compared functional T2 mapping using ultrafast imaging (fast-mfMRI) with cross-sectional areas. Results: Although the muscle cross-sectional areas were increased by the exercise, there was no significant difference at rest. On the other hand, for all sets, the changes in T2 were significant compared with those at rest (P < 0.01). These results demonstrate that T2, calculated from fast-mfMRI images can be used to detect even a small amount of muscle activity induced by acute exercise, which was impossible to do with cross-sectional areas. Conclusion: Fast-mfMRI, which can also display functional information with detailed forms, enabled non-invasive real-time imaging for identifying and evaluating the degree of deep trunk-muscle activity induced by exercise.

The Shorr Versus Modified Ultrafast Papanicolaou Method for Intraoperative Diagnosis of Peritoneal Washing Cytology in Advanced Gastric Cancer: A Phase II Study

  • So Hyun Kang ;Hee Young Na;Younghwa Choi;Eunju Lee ;Mira Yoo;Duyeong Hwang;Sa-Hong Min;Young Suk Park;Sang-Hoon Ahn;Yun-Suhk Suh ;Do Joong Park ;Hye Seung Lee ;Hyung-Ho Kim
    • Journal of Gastric Cancer
    • /
    • v.23 no.4
    • /
    • pp.549-560
    • /
    • 2023
  • Purpose: According to the American Joint Committee on Cancer cancer staging system, positive peritoneal washing cytology (PWC) indicates stage IV gastric cancer. However, rapid intraoperative diagnosis of PWC has no established reliable method. This study evaluated and compared the diagnostic accuracy of the Shorr and the modified ultrafast Papanicolaou (MUFP) methods for intraoperative PWC. Materials and Methods: This study included patients with gastric cancer who were clinically diagnosed with stage cT3 or higher. The Shorr and MUFP methods were performed on all PWC specimens, and the results were compared with those of conventional Papanicolaou (PAP) staining with carcinoembryonic antigen immunohistochemistry. Sensitivity, specificity, and partial likelihood tests were used to compare the 2 methods. Results: Forty patients underwent intraoperative PWC between November 2019 and August 2021. The average time between specimen reception and slide preparation using Shorr and MUFP methods was 44.4±4.5 minutes, and the average time between specimen reception and pathologic diagnosis was 53.9±8.9 minutes. Eight patients (20.0%) had positive cytology in PAP staining. The Shorr method had a sensitivity of 75.0% and specificity of 93.8%; the MUFP method had 62.5% sensitivity and 100.0% specificity. The area under the curve was 0.844 for Shorr and 0.813 for MUFP. In comparing the C-indices of each method with overall survival, no difference was found among the Shorr, MUFP, and conventional PAP methods. Conclusions: The Shorr and MUFP methods are acceptable for the intraoperative diagnosis of PWC in advanced gastric cancer.

Synthesis of Ce-doped In2O3 nanoparticles via a microwave-assisted hydrothermal pathway and their application as an ultrafast breath acetone sensor

  • Byeong-Hun Yu;Sung Do Yun;Chan Woong Na;Ji-Wook Yoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.393-400
    • /
    • 2023
  • Acetone, a metabolite detected from the exhaled breath of people doing a diet, can be used for non-invasive monitoring of diet efficiency. Thus, gas sensors with rapid response and recovery characteristics to acetone need to be developed. Herein, we report ultrafast acetone sensors using Ce-doped In2O3 nanoparticles prepared by the one-pot microwave-assisted hydrothermal method. The pure In2O3 sensor shows a high response and fast response time (τres = 6 s) upon exposure to 2 ppm acetone at 300 ℃, while exhibiting a relatively sluggish recovery speed (τrecov = 1129 s). When 20 wt% Ce is doped, the τrecov of the sensor significantly decreased to 45 s withholding the fast-responding characteristic (τres = 6 s). In addition, the acetone response (resistance ratio, S) of the sensor is as high as 5.8, sufficiently high to detect breath acetone. Moreover, the sensor shows similar acetone sensing characteristics even under a highly humid condition (relative humidity of 60%) in terms of τres (6 s), τrecov (47 s), and S (4.7), demonstrating its high potential in real applications. The excellent acetone sensing characteristics of Ce-doped In2O3 nanoparticles are discussed in terms of their size, composition, phase, and oxygen adsorption on the sensing surface.