Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.9.458

Fabrication of Boron-Doped Activated Carbon for Zinc-Ion Hybrid Supercapacitors  

Lee, Young-Geun (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Jang, Haenam (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
An, Geon-Hyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.30, no.9, 2020 , pp. 458-464 More about this Journal
Abstract
Zinc-ion hybrid supercapacitors (ZICs) have recently been spotlighted as energy storage devices due to their high energy and high power densities. However, despite these merits, ZICs face many challenges related to their cathode materials, activated carbon (AC). AC as a cathode material has restrictive electrical conductivity, which leads to low capacity and lifetime at high current densities. To overcome this demerit, a novel boron (B) doped AC is suggested herein with improved electrical conductivity thanks to B-doping effect. Especially, in order to optimize B-doped AC, amounts of precursors are regulated. The optimized B-doped AC electrode shows a good charge-transfer process and superior electrochemical performance, including high specific capacity of 157.4 mAh g-1 at current density of 0.5 A g-1, high-rate performance with 66.6 mAh g-1 at a current density of 10 A g-1, and remarkable, ultrafast cycling stability (90.7 % after 10,000 cycles at a current density of 5 A g-1). The superior energy storage performance is attributed to the B-doping effect, which leads to an excellent charge-transfer process of the AC cathode. Thus, our strategy can provide a rational design for ultrafast cycling stability of next-generation supercapacitors in the near future.
Keywords
energy storage; zinc-ion hybrid supercapacitors; electrode material; boron-doped activated carbon;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008).   DOI
2 H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald and R. S. Ruoff, Nat. Nanotechnol., 9, 618 (2014).   DOI
3 L. Wei and G. Yushin, Nano Energy, 1, 552 (2012).   DOI
4 G.-H. An, Korean J. Mater. Res., 29, 505 (2019).   DOI
5 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 192 (2017).   DOI
6 D.-Y. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 617 (2017).   DOI
7 W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia and J. Liu, Adv. Sci., 4, 1600539 (2017).   DOI
8 A. Afif, S. M. H. Rahman, A. T. Azad, J. Zaini, M. A. Islan and A. K. Azad, J. Energy Storage, 25, 100852 (2019).   DOI
9 S.-I. Shin, B.-G. Lee, M.-W. Ha and G. H. An, Korean J. Mater. Res., 29, 774 (2019).   DOI
10 G.-H. An, Curr. Appl. Phys., 20, 605 (2020).   DOI
11 L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.-H. Yang and F. Kang, Energy Storage Mater., 13, 96 (2018).   DOI
12 G.-H. An, J. Hong, S. Pak, Y, Cho, S. Lee, B. Hou and S. N. Cha, Adv. Energy Mater., 10, 1902981 (2020).   DOI
13 Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji, H. Pang, C. Yu and J. Qiu, Nano Energy, 66, 104132 (2019).   DOI
14 D. Wang, Z. Wang, Y. Li, K. Dong, J. Shao, S. Luo, Y. Liu and X. Qi, Appl. Surf. Sci., 464, 422 (2019).   DOI
15 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 640 (2018).   DOI
16 Y.-G. Lee, G.-H. An and H.-J. Ahn, J. Alloys Compd., 751, 62 (2018).   DOI
17 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 182 (2018).   DOI
18 Y.-G. Lee and H.-J. Ahn, Appl. Surf. Sci., 487, 389 (2019).   DOI
19 H.-G. Jo, D.-Y. Shin and H.-J. Ahn, Korean J. Mater. Res., 29, 167 (2019).   DOI