• 제목/요약/키워드: ultra-precision

검색결과 922건 처리시간 0.023초

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 박기형;김재열;곽이구
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

축대칭 렌즈 코어의 초정밀 보정가공에 관한 연구 (A Study on the Ultra-precision Compensation Machining of Axisymmetric Lens Core)

  • 강상도;김우순;장광호;박순섭;김동현
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.108-114
    • /
    • 2005
  • Code V was used to make a plan for collimator lens with aspherical surface in the present study. The acquired optical design data were applied for ultra-precision machining. The optimum properties were determined to find ways to compensate the tool positioning error allowance during the ultra-precision machining. In ultra-precision aspheric machining, figure tolerance corrected by tool positioning error be improved by compensation cycle number.

Al합금의 초정밀 선삭가공 (A Study on the Ultra-Precision Turning of Al Alloy)

  • 김우순;채왕석;김동현;난바의치
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.416-421
    • /
    • 2003
  • To obtain the surface roughness with range from l0nm to In n need a ultra-Precision machine, cutting condition and the study of materials. And n have to also consider the chip and vibration of diamond tool during processing. In this paper, the cutting conditions for getting mirror surface of aluminum alloy have been examined experimentally by using ultra-precision turning and single crystal diamond tool. In generally, the cutting conditions have effect on the surface roughness in ultra-precision turning. The result of surface roughness was measured by the ZYGO New View 200.

  • PDF

초실감/고정밀 서비스를 위한 초정밀 네트워크 기술 동향 (Ultra-High-Precision Network Technology Trend for Ultra-Immersive/High-Precision Service)

  • 최영일;김응하;강태규;김도영;김정윤;정태식
    • 전자통신동향분석
    • /
    • 제36권4호
    • /
    • pp.34-47
    • /
    • 2021
  • To realize remote surgery from hundreds of kilometers away, a new communication environment with ultra-low latency and high-precision features is required. Thus, ultra-high precision networking technology that guarantees the maximum latency and jitter of end-to-end traffic on an Internet-scale wide area network is in development as part of 6G network research. This paper describes the current status of various networking technologies in ITU-T, ETSI, IEEE, and IETF to ensure ultra-low latency and high precision in wired networks.

초정밀 비구면 가공용 CAM 소프트웨어 개발에 대한 연구 (The Development of CAM Software for Ultra-precision Aspheric Surface)

  • 양민양;이택민
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.79-86
    • /
    • 2002
  • As consumer electronics, information, and aero-space industry grow, the demand for aspheric lens increases higher. To enhance the precision and productivity of aspheric surface, a CAM system for ultra-precision aspheric surface needs to be realized. In this study, the developed CAM system can generate NC code fur various aspheric surfaces fast and precisely by a new bi-arc interpolation method that the location of maximum error is fixed at an efficient point. The newly developed bi-arc meets the given tolerance more precisely, performs faster calculation. The cutting condition input module and the NC code verification module are adequate to ultra-precision machining, so that a operator can obtain products fast and easily.

초정밀 비구면 선삭가공용 CAM 소프트웨어 개발에 대한 연구 (The Development of CAM Software for Ultra-precision Aspheric Surface)

  • 양민양;이택민;이성찬;이재윤;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.534-537
    • /
    • 1996
  • As consumer electronics, information, and aero-space industry grow, the demand for aspheric lens increases higher. To enhance the precision and productivity of aspheric surface, a CAM system for ultra-precision aspheric surface needs to be realized. In this study, the developed CAM system can generate NC code for various aspheric surfaces fast and precisely by Tri-arc interpolation method that the location of maximum error is fixed. The cutting condition input module and the NC code verification module are adequate to ultra-precision machining, so that a operator can obtain products fast and easily.

  • PDF

히스테리시스 보상을 이용한 압전구동기의 초정밀 위치제어 (Ultra-Precision Position Control of Piezoelectric Actuator System Using Hysteresis Compensation)

  • 홍성룡;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2000
  • In this paper, the ultra precision positioning system for piezoelectric actuator using hysteresis compensation has been developed. Piezoelectric actuators exhibit limited accuracy in tracking control due to their hysteresis nonlinearity. The main purpose of the proposed controller is to compensate the hysteresis nonlinearity of the piezoelectric actuator. The controller is composed of a PD, hysteresis compensation and neural network part in parallel manner, at first, the excellent tracking performance of the neural network controller was verified by experiments and was compared with the classical PD controller.

  • PDF

초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석 (Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation)

  • 김재열;곽이구;유신
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

초정밀 비구면 렌즈 금형가공시스템 개발 (Development of machining system for ultra-precision aspheric lens mold)

  • 백승엽;이하성;강동명
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF