• Title/Summary/Keyword: ultra-low power

Search Result 356, Processing Time 0.026 seconds

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

Core Technology for Ultra Low Power Using Cold Restart in Wearable Devices (Cold Restart를 이용한 웨어러블 디바이스의 초저전력 핵심 기술)

  • Kim, Seon-Tae;Park, Hyoung Jun;Park, Ho-Jun;Woo, Duk-Kyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.44-49
    • /
    • 2017
  • There are many battery-based wearable devices for healthcare and medical applications, but there is a user's inconvenience to charge battery frequently due to insufficient power management. In this paper, we propose a tickless-based operating system and power management algorithm that can effectively utilize the power management provided by HW, and propose a cold restart method that consumes the minimum power at the board level. The operating system of the proposed technique has reduced the power consumption from 2 times to 33 times in the four scenarios modeling the wearable device application compared to the existing operating system.

Development of ultra-high frequency (UHF) ultra-wide bandwidth signal processing unit for UHF partial-discharge monitoring system for gas-insulated switchgears (가스절연개폐장치용 부분방전 감시 시스템을 위한 초광대역 극초단파 신호처리장치 개발)

  • Choi, Jae-Ok;Kim, Young-No;Lee, Young-Sang;Gang, Chang-Won;Park, Ki-Jun;Goo, Sun-Geun;Yoon, Jin-Yul;Koo, Jae-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1963-1966
    • /
    • 2004
  • An ultra wide band ultra-high frequency (UHF) signal processing module was designed for on-line UHF partial discharge (PD) monitoring systems for gas-insulated switchgears (GIS). Major advantage of the unit is an improved PD detection sensitivity through minimizing the effect of surrounding interference signals. The detection sensitivity of the unit was <-60 dBm that is sufficient to detect UHF PD signals as low as 1 pC. Precise detection of PD occurred in the GIS, due to internal defects, is possible by using the signal processing unit.

  • PDF

Development of ultra-high frequency (UHF) ultra-wide bandwidth signal processing unit for UHF partial-discharge monitoring system for gas-insulated switchgears (가스절연개폐장치용 부분방전 감시 시스템을 위한 초광대역 극초단파 신호처리장치 개발)

  • Choi, Jae-Ok;Kim, Young-No;Lee, Young-Sang;Kang, Chang-Won;Park, Ki-Jun;Goo, Sun-Geun;Yoon, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.128-131
    • /
    • 2004
  • An ultra wide band ultra-high frequency (UHF) signal processing module was designed for on-line UHF partial discharge (PD) monitoring systems for gas-insulated switchgears (GIS). Major advantage of the unit is an improved PD detection sensitivity through minimizing the effect of surrounding interference signals. The detection sensitivity of the unit was <-60 dBm that is sufficient to detect UHF PD signals as low as 1 pC. Precise detection of PD occurred in the GIS, due to internal defects, is possible by using the signal processing unit.

  • PDF

Low-power memory based FFT structure for high speed UWB (UWB용 저전력 Memory based FFT 구조)

  • Choi, Dong-Kyu;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.215-216
    • /
    • 2008
  • Ultra wideband (UWB) system is one of the promising solutions for future short-range communication which has recently received a great attention by many researchers. In this paper, we proposed 128-point low power FFT structure based on the memory for UWB systems. The proposed structure can improve implementation area and power consumption efficiency as it consists of one of the butterfly PE and a little memory.

  • PDF

Development of Low-profile DC/DC Converter Using PCB Transformer (PCB변압기를 이용한 초박형 DC/DC컨버터 개발)

  • Kim, Dong-Hyung;Choi, Byung-Cho;Lee, Ki-Jo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.476-479
    • /
    • 2002
  • The proposed DC/DC converter employs a pair of neighboring printed-circuit-board windings as a coreless transformer Thus, the proposed DC/DC converter can be fabricated In an ultra low-profile fashion. The performance of the proposed low-profile DC/DC converter is confirmed with experiments on a prototype converter that delivers 58W of power at the maximum efficiency of $84\%$.

  • PDF

Development of Sound Frequency Analyser using an Ultra-Low Power MCU (초저전력 Micro Controller Unit(MCU)를 활용한 소리 주파수 분석기 개발)

  • Choi, Jae-Hoon;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.403-410
    • /
    • 2016
  • Materials made of metals have their own manifest resonant frequencies. Using this property, the quality test of products from the factory can be performed. An impact is applied to the product and the frequencies of the sound and/or vibration are measured using high-end equipments. They use a general purpose computer or a DSP(: Digital Signal Processor)-based stand-alone system which is usually too large in-size to carry and expensive to build. In this paper, we introduce a system that is developed based on a MSP430 MCU(:Micro-Controller Unit) from TI(: Texas Instruments). The ultra-low power MSP430 MCUs make it possible to make a frequency analyzer in a very small size without the need of using a large-size battery. The proposed system can be used in situations where the frequency analyzer should be carried easily with an investigator and should be built at low cost sacrificing some accuracy. We implemented the system using a launchpad supplied by TI and could confirm that the proposed system could identify with a high-accuracy the frequencies of various artificial and natural sounds.

A Study on Low Phase Noise PLL Design for Ultra Wideband (초 광대역에 적용 가능한 저위상 잡음 PLL 설계에 관한 연구)

  • Shim, Yong-Sup;Lee, Il-Kyoo;Lee, Yong-Woo;Oh, Seung-Hyeub
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • In this paper, we have introduced a new way to design low phase noise PLL which can apply to the Ultra wideband as meeting performance requirements based on structure improvement, circuit supplement, upgraded design method. Before development of the PLL, we simulated spectrum power, phase noise, harmonic characteristic by using ADS(Advanced Designed System). And, we compared result between measurement and simulation. Finally, we confirm a satisfying result which meet performance requirements between required standard and measured value. It will be useful for transceiver of service which operate in Ultra wideband.

New UWB 1:2 Power Divider with Flat In-Band Splitting and Bandpass Filtering Functions

  • Duong, Thai Hoa;Kim, Ihn-Seok
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • This paper introduces a new U.S. ultra-wideband(UWB: 3.1~10.6 GHz) 1:2 power divider based on a single section Wilkinson type configuration. The divider provides very flat in-band power splitting, high isolation, low insertion loss, sharp roll-off bandpass filtering, and DC blocking characteristics. The circuit consists of a $\lambda$/4 Y resonator, three capacitively coupled $\lambda$/2 short-circuited lines, and a resistor between the two output ports. The circuit structure was simulated with ADS and HFSS, and realized with low-temperature co-fired ceramic(LTCC) green tape, which has a dielectric constant of 7.8. $|S_{11}|$ better than 10 dB, $|S_{21}|$ and $|S_{31}|$ less than 3.2 dB, with both $|S_{22}|$ and $|S_{32}|$ measured as better than 12 dB for the whole UWB band. Measurement results agree closely with HFSS simulation results. The power divider has a compact size of $4\times9\times0.6mm^3$.

The Development of Ultra-Miniature / Wideband VCO (초소형/광대역 VCO 개발)

  • 변상기;강용철;황치전;안태준
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.183-186
    • /
    • 1999
  • The Ultra-miniature and low phase noise Colpitts VCO of 0.06㏄ in size has been developed using the high Q resonator and phase compensation technique. This type is one transistor VCO without a buffer. To design and simulate the VCO accurately, nolinear model parameters of a bipolar transistor are extracted using the measured I-V data and S parameters based on the Gummel-Poon model. Design and simulation have been done by Serenade 7.5 design tool using the extracted nonlinear model parameters. The wideband VCO has been designed using two varactor diodes and open loop gain compensation technique to improve the operating frequency range. The ultra-miniature VCO has shown the phase noise of -91㏈c/Hz at 10KHz offset and output power of -3㏈m The wideband VCO has shown the tuning frequency bandwidth of 150MHz phase noise of -95㏈c/Hz at 10KHz offset and output power of 5㏈m.

  • PDF