• Title/Summary/Keyword: ultra-low power

Search Result 356, Processing Time 0.037 seconds

Effective Annealing and Crystallization of Si Film for Advanced TFT System

  • Noguchi, Takashi
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.12-16
    • /
    • 2010
  • The effect of the crystallization and activated annealing of Si films using an excimer laser and the new CW blue laser are described and compared with furnace annealing for application in advanced TFTs and for future applications. Pulsed excimer laser annealing (ELA) is currently being used extensively as a low-temperature poly-silicon (LTPS) process on glass substrates as its efficiency is high in the ultra-violet (UV) region for thin Si films with thickness of 40-60 nm. ELA enables extremely low resistivity relating to high crystallinity for both the n- and p-type Si films. On the other hand, CW blue laser diode annealing (BLDA) enables the smooth Si surface to have arbitral crystal grains from micro-grains to an anisotropic huge grain structure only by controlling its power density. Both annealing techniques are expected to be applied in the future advanced TFT systems.

Control Network using Bluetooth with Wire Network (유선 네트워크 기반의 근거리 무선 통신을 이용한 제어용 네트워크)

  • Gwak, Jae-Hyeok;Im, Jun-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.476-479
    • /
    • 2003
  • Recently, Bluetooth has been regarded as a new technology for short-range wireless connection. Although initial application of Bluetooth technology has been focused mainly on replacing cables between hand-held devices due to a limited packet size and short-range, general wireless telecommunication such as PAN and Ad hoc networks via Bluetooth-equipped devices is expected to be one of the most popular applications. Wireless equipments have been used to exchange data between host and mobile unit. The exchanging data may be several bytes of control command and the value of sensors with ultra-sonic, vision sensor, and encoder from mobile robot. However, most wireless equipments have some drawbacks such as lack of authentication, large size and high price. On the other hand, the benefits of Bluetooth are small size, low power, low price except short-range. Especially, there are some difficulties when wireless modules are used in indoor environments. In this paper, a method of using wire network in Bluetooth network is investigated as a solution to overcome the short-range problem of Bluetooth and difficulty in indoor environment.

  • PDF

A Study on the Application of LED at Ultra-low Temperature (극저온에서 LED 응용에 관한 연구)

  • Ha, Hee-Ju;Kim, Jin-Wook;Kim, Sun-Jae;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.600-605
    • /
    • 2014
  • The interest in development on luminaires which are available up to $-52^{\circ}C$ is surging as demands in vessels navigating a north pole route increase. A conventional incandescent lamp used in vessels is operated stably at $-52^{\circ}C$, but many countries including Korea have eliminated the use of incandescent lamps gradually because of its low luminous efficacy. In this paper, therefore, to develop the LED luminaires with high-efficiency, long lifetime that enables to substitute for incandescent lamp, it has studied about cryogenic characteristics of LED packages, bulbs, driving circuit and power supply. This experiments were carried out according to standards IEC 60945-8.4.1. Temperature range is from $-60^{\circ}C$ to $25^{\circ}C$, and the light output depending on ambient temperature. It showed that, based on $25^{\circ}C$, light output of a CFL decreased by 80% of CFL at $-20^{\circ}C$ while each increased 12% of LED bulbs and 16~19% of LED packages at $-60^{\circ}C$.

An investigation on dicing 28-nm node Cu/low-k wafer with a Picosecond Pulse Laser

  • Hsu, Hsiang-Chen;Chu, Li-Ming;Liu, Baojun;Fu, Chih-Chiang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.63-68
    • /
    • 2014
  • For a nanoscale Cu/low-k wafer, inter-layer dielectric (ILD) and metal layers peelings, cracks, chipping, and delamination are the most common dicing defects by traditional diamond blade saw process. Sidewall void in sawing street is one of the key factors to bring about cracks and chipping. The aim of this research is to evaluate laser grooving & mechanical sawing parameters to eliminate sidewall void and avoid top-side chipping as well as peeling. An ultra-fast pico-second (ps) laser is applied to groove/singulate the 28-nanometer node wafer with Cu/low-k dielectric. A series of comprehensive parametric study on the recipes of input laser power, repetition rate, grooving speed, defocus amount and street index has been conducted to improve the quality of dicing process. The effects of the laser kerf geometry, grooving edge quality and defects are evaluated by using scanning electron microscopy (SEM) and focused ion beam (FIB). Experimental results have shown that the laser grooving technique is capable to improve the quality and yield issues on Cu/low-k wafer dicing process.

Active Controlled Primary Current Cutting-Off ZVZCS PWM Three-Level DC-DC Converter

  • Shi, Yong
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.375-382
    • /
    • 2018
  • A novel active controlled primary current cutting-off zero-voltage and zero-current switching (ZVZCS) PWM three-level dc-dc converter (TLC) is proposed in this paper. The proposed converter has some attractive advantages. The OFF voltage on the primary switches is only Vin/2 due to the series connected structure. The leading-leg switches can obtain zero-voltage switching (ZVS), and the lagging-leg switches can achieve zero-current switching (ZCS) in a wide load range. Two MOSFETs, referred to as cutting-off MOSFETs, with an ultra-low on-state resistance are used as active controlled primary current cutting-off components, and the added conduction loss can be neglected. The added MOSFETs are switched ON and OFF with ZCS that is irrelevant to the load current. Thus, the auxiliary switching loss can be significantly minimized. In addition, these MOSFETs are not series connected in the circuit loop of the dc input bus bar and the primary switches, which results in a low parasitic inductance. The operation principle and some relevant analyses are provided, and a 6-kW laboratory prototype is built to verify the proposed converter.

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

Ultra Wideband (UWB) - Introduction and Signal Modeling

  • Manandhar, Dinesh;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1421-1423
    • /
    • 2003
  • Ultra Wideband is a new technology from commercial or civilian application viewpoint. It uses already allocated radio spectrum without causing significant interference to other users. It uses very low power, which is below the thermal noise of the receiver and is inherently difficult to detect by un-intentional users. Since, FCC approved the regulation for the commercial use of UWB in February 2002, the development of UWB technology is drastically gaining momentum. However, the technology itself is not new. It has already been used in military applications. UWB has three basic areas of applications, which are communication, positioning and imaging (UWB Microwave). The main commercial application will be for communication since it has very high data transfer rate for short distance. It can also be used for both indoor and outdoor 3-D positioning. Another important application is imaging like microwave remote sensing. An UWB sensor can pass through doors and walls and hence detect the objects inside the room. In this paper, we will introduce about UWB technology along with it’s various possible applications. We will also present some models to generate UWB signal and it’s analysis using signal-processing tools.

  • PDF

A CMOS IR-UWB RFIC for Location Based Systems (위치 기반 시스템을 위한 CMOS IR-UWB RFIC)

  • Lee, Jung Moo;Park, Myung Chul;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.67-73
    • /
    • 2015
  • This paper presents a fully integrated 3 - 5 GHz IR-UWB(impulse radio ultra-wide band) RFIC for Location based system. The receiver architecture adopts the energy detection method and for high speed sampling, the equivalent time sampling technique using the integrated DLL(delay locked loop) and 4 bit ADC. The digitally synthesized UWB impulse generator with low power consumption is also designed. The designed IR-UWB RFIC is implemented on $0.18{\mu}m$ CMOS technology. The receiver's sensitivity is -85.7 dBm and the current consumption of receiver and transmitter is 32 mA and 25.5 mA respectively at 1.8 V supply.

Adaptive Multiple Antenna Transmission Scheme in DS-UWB System (직접 확산 초 광대역 통신에서의 적응 다중 안테나 전송 기법)

  • Song Hyoung-Kyu;Kook Hyung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1208-1213
    • /
    • 2005
  • Recently, ultra wideband(UWB) is emerging as a solution for the IEEE 802.15.3a(TG3a) standard because of its potential to enable high-speed data transmission with low power consumption. One of the submitted systems as s PHY proposal is M-ary biorthogonal keying direct sequence ultra wideband(M-BOK DS-UWB). In this paper, adaptive multiple antenna transmission scheme for achieving high capacity and reliability in M-BOK DS-UWB is proposed. This proposed system can overcome the limitations of STBC and V-BLAST, such as bit error rate performance and throughput.

Capacity Analysis of UWB Networks in Three-Dimensional Space

  • Cai, Lin X.;Cai, Lin;Shen, Xuemin;Mark, Jon W.
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.287-296
    • /
    • 2009
  • Although asymptotic bounds of wireless network capacity have been heavily pursued, the answers to the following questions are still critical for network planning, protocol and architecture design: Given a three-dimensional (3D) network space with the number of active users randomly located in the space and using the wireless communication technology, what are the expected per-flow throughput, network capacity, and network transport capacity? In addition, how can the protocol parameters be tuned to enhance network performance? In this paper, we focus on the ultra wideband (UWB) based wireless personal area networks (WPANs) and provide answers to these questions, considering the salient features of UWB communications, i.e., low transmission/interference power level, accurate ranging capability, etc. Specifically, we demonstrate how to explore the spatial multiplexing gain of UWB networks by allowing appropriate concurrent transmissions. Given 3D space and the number of active users, we derive the expected number of concurrent transmissions, network capacity and transport capacity of the UWB network. The results reveal the main factors affecting network (transport) capacity, and how to determine the best protocol parameters, e.g., exclusive region size, in order to maximize the capacity. Extensive simulation results are given to validate the analytical results.