• Title/Summary/Keyword: ultimate load-carrying capacity

Search Result 161, Processing Time 0.024 seconds

Flexural Behavior of Prestressed Dual Concrete Beams (프리스트레스트 이중 콘크리트 보의 휨 거동 해석)

  • Park Tae-Hyo;Yun Sung-Hwan;Yun Hee-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.445-454
    • /
    • 2005
  • Cracks due to low tensile strength in prestressed concrete (PC) beams may decrease rigidity and structural performance, resulting in excessive deflection. In an effort to solve this problem, in this research, prestressed dual concrete (PDC) has been proposed, consisting of normal strength concrete in compression zone, and high performance steel fiber reinforced concrete(HPSFRC) with a partial depth in tensile zone. Three PDC beams with different depths of HPSFRC and two PC beams were cast for experiments. Analytical models at each stage, i.e., precracking, postcracking, and ultimate, were proposed for analysis of flexural behavior in PDC beams. The experimental results agree well to the analytical ones. Crack formation and its propagation are controlled by the HPSFRC in PDC beams. The initial cracking and service limit loads are increased along with the load carrying capacity and flexural stiffness.

Computational analysis and design formula development for the design of curved plates for ships and offshore structures

  • Kim, Joo-Hyun;Park, Joo-Shin;Lee, Kyung-Hun;Kim, Jeong-Hyeon;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.705-726
    • /
    • 2014
  • In general, cylindrically curved plates are used in ships and offshore structures such as wind towers, spa structures, fore and aft side shell plating, and bilge circle parts in merchant vessels. In a number of studies, it has been shown that curvature increases the buckling strength of a plate under compressive loading, and the ultimate load-carrying capacity is also expected to increase. In the present paper, a series of elastic and elastoplastic large deflection analyses were performed using the commercial finite element analysis program (MSC.NASTRAN/PATRAN) in order to clarify and examine the fundamental buckling and collapse behaviors of curved plates subjected to combined axial compression and lateral pressure. On the basis of the numerical results, the effects of curvature, the magnitude of the initial deflection, the slenderness ratio, and the aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. On the basis of the calculated results, the design formula was developed to predict the buckling and ultimate strengths of curved plates subjected to combined loads in an analytical manner. The buckling strength behaviors were simulated by performing elastic large deflection analyses. The newly developed formulations were applied in order to perform verification analyses for the curved plates by comparing the numerical results, and then, the usefulness of the proposed method was demonstrated.

Structural Behavior of the Reinforced Concrete Filled GFRP Tube (GFRP 보강 철근콘크리트 합성부재의 구조적 거동)

  • Lee, Seung-Sik;Joo, Hyung-Joong;Kang, In-Kyu;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.44-51
    • /
    • 2010
  • Recently, to solve the problems associated with the neutralization and corrosion of reinforced concrete compression members, the structural configurations such as CFFT (Concrete Filled GFRP Tube) and RCFFT (Reinforced Concrete Filled GFRR Tube) have been developed and applied to main members of civil engineering structure. These members can increase structural performance in terms of structural stability, ductility as well as chemical resistance compared with conventional concrete structural members. Many researches in numerous institutions to predict the load carrying capacity of the concrete compression member strengthened with FRP materials have been conducted and they have been suggested an equation for the prediction of the load carrying capacity of the members. Through the review of the research results, it was found that their results are similar each other. Moreover, it was also found that the results are not directly applicable to our specimens since the results are largely depended upon the member configurations. Also, since the accurate design criteria for the RC members strengthened with FRP such as RCFFT have not been established properly, relevant theoretical and experimental investigations must be conducted for the application to the practical structures. In this study, structural behavior of RCFFT was evaluated through compressive and quasi-static flexural tests in order to formulate design criteria for the structural design. In addition, the RCFFT members were also investigated to examine their confinement effect and the equations capable of estimating the compressive ultimate strength and flexural stiffness of the RCFFT members were proposed.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

Seismic improvement of infilled nonductile RC frames with external mesh reinforcement and plaster composite

  • Kamanli, Mehmet;Korkmaz, Hasan H.;Unal, Alptug;Balik, Fatih S.;Bahadir, Fatih;Cogurcu, Mustafa T.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.761-778
    • /
    • 2015
  • The objective of this paper is to report the result of an experimental program conducted on the strengthening of nonductile RC frames by using external mesh reinforcement and plaster application. The main objective was to test an alternative strengthening technique for reinforced concrete buildings, which could be applied with minimum disturbance to the occupants. Generic specimen is two floors and one bay RC frame in 1/2 scales. The basic aim of tested strengthening techniques is to upgrade strength, ductility and stiffness of the member and/or the structural system. Six specimens, two of which were reference specimens and the remaining four of which had deficient steel detailing and poor concrete quality were strengthened and tested in an experimental program under cyclic loading. The parameters of the experimental study are mesh reinforcement ratio and plaster thickness of the infilled wall. The effects of the mesh reinforced plaster application for strengthening on behavior, strength, stiffness, failure mode and ductility of the specimens were investigated. Premature and unexpected failure mode has been observed at first and second specimens failed due to inadequate plaster thickness. Also third strengthened specimen failed due to inadequate lap splice of the external mesh reinforcement. The last modified specimen behaved satisfactorily with higher ultimate load carrying capacity. Externally reinforced infill wall composites improve seismic behavior by increasing lateral strength, lateral stiffness, and energy dissipation capacity of reinforced concrete buildings, and limit both structural and nonstructural damages caused by earthquakes.

Structural Performance of High-Strength Concrete-Filled Steel Tube Steel Columns using Different Strength Steels (이종강종을 사용한 고강도 CFT 합성부재의 구조성능)

  • Choi, In Rak;Chung, Kyung Soo;Kim, Jin Ho;Hong, Geon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.711-723
    • /
    • 2012
  • Structural tests were performed to investigate the structural performance of concrete-filled steel tube column using different strength steels in their flange and web with high-strength steel HSA800 and mild steel SM490, respectively. The test parameters included the strength of column flange and infill concrete, and effect of concrete infill. Connection between different grade steels were welded using the electrode appropriate for mild steel and verified its performance. To evaluate the behavior of test specimens, eccentric loading tests were performed and the results were compared with the prediction by current design codes. Axial load and moment carrying capacity of test specimens increased with the yield strength of compression flange and weld fracture occurred after the specimen shows full strength. The prediction result for axial load-bending moment relationship and effective flexural stiffness gave good agreement with the test result.

Behaviour of cold-formed steel concrete infilled RHS connections and frames

  • Angeline Prabhavathy, R.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.71-85
    • /
    • 2006
  • This paper presents the results of a series of tests carried out on cold-formed steel rectangular hollow and concrete infilled beam to column connections and frames. A stub column was chosen such that overall buckling does not influence the connection behaviour. The beam chosen was a short-span cantilever with a concentrated load applied at the free end. The beam was connected to the columns along the strong and weak axes of columns and these connections were tested to failure. Twelve experiments were conducted on cold-formed steel direct welded tubular beam to column connections and twelve experiments on connections with concrete infilled column subjected to monotonic loading. In all the experiments conducted, the stiffness of the connection, the ductility characteristics and the moment rotation behaviour were studied. The dominant mode of failure in hollow section connections was chord face yielding and not weld failure. Provision of concrete infill increases the stiffness and the ultimate moment carrying capacity substantially, irrespective of the axis of loading of the column. Weld failure and bearing failure due to transverse compression occurred in connections with concrete infilled columns. Six single-bay two storied frames both with and without concrete infill, and columns loaded along the major and minor axes were tested to failure. Concentrated load was applied at the midspan of first floor beam. The change in behaviour of the frame due to provision of infill in the column and in the entire frame was compared with hollow frames. Failure of the weld at the junction of the beam occurred for frames with infilled columns. Design expressions are suggested for the yielding of the column face in hollow sections and bearing failure in infilled columns which closely predicted the experimental failure loads.

Distribution of shear force in perforated shear connectors

  • Wei, Xing;Shariati, M.;Zandi, Y.;Pei, Shiling;Jin, Zhibin;Gharachurlu, S.;Abdullahi, M.M.;Tahir, M.M.;Khorami, M.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.389-399
    • /
    • 2018
  • A perforated shear connector group is commonly used to transfer shear in steel-concrete composite structures when the traditional shear stud connection is not strong enough. The multi-hole perforated shear connector demonstrates a more complicated behavior than the single connector. The internal force distribution in a specific multi-hole perforated shear connector group has not been thoroughly studied. This study focuses on the load-carrying capacity and shear force distribution of multi-hole perforated shear connectors in steel-concrete composite structures. ANSYS is used to develop a three-dimensional finite element model to simulate the behavior of multi-hole perforated connectors. Material and geometric nonlinearities are considered in the model to identify the failure modes, ultimate strength, and load-slip behavior of the connection. A three-layer model is introduced and a closed-form solution for the shear force distribution is developed to facilitate design calculations. The shear force distribution curve of the multi-hole shear connector is catenary, and the efficiency coefficient must be considered in different limit states.

Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment

  • Zhang, Qifeng;Feng, Yan;Cheng, Zhao;Jiao, Yang;Cheng, Hang;Wang, Jingquan;Qi, Jianan
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.175-183
    • /
    • 2022
  • To study the working mechanism and size effect of an innovative dovetail UHPC joint originated from the 5th Nanjing Yangtze River Bridge, a large-scale testing subject to negative bending moment was conducted and compared with the previous scaled specimens. The static responses, i.e., the crack pattern, failure mode, ductility and stiffness degradation were analyzed. It was found that the scaled specimens presented similar working stages and working mechanism with the large-scale ones. However, the post-cracking ductility and relative stiffness degradation all decrease with the enlarged length/scale, apart from the relative stiffness after flexural cracking. The slab stiffness at the flexural cracking stage is 90% of the initial stiffness while only 24% of the initial stiffness reserved in the ultimate stage. Finite element model (FEM) was established and compared with the experiments to verify its effectiveness in exploring the working mechanism of the innovative joint. Based on this effective method, a series of FEMs were established to further study the influence of material strength, pre-stressing level and ratio of reinforcement on its deflection-load relationship. It is found that the ratio of reinforcement can significantly improve its load-carrying capacity among the three major-influenced factors.

Experimental Study on the Flexural Behavior Effect of RC Beam Repaired and Strengthened by Latex Modified Concrete (라텍스개질콘크리트로 보수·보강된 RC 보의 휨 거동에 관한 실험적 연구)

  • Kim, Seong-Hwan;Yun, Kyong-Ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.503-510
    • /
    • 2009
  • Latex modified concrete (LMC) is a successful polymer-portland cement concretes, which have been developed and used for many years, in overlaying bridge decks and resurfacing industrial floors. The excellent bond strength to substrate, easy application and high resistance to impact, abrasion, wear, aggressive chemicals and freeze-thaw deterioration have made this material used widely. The objective of this study was to determine experimentally the load-deflection response and ultimate strength of reinforced RC beams. The cracking patterns and the mode of failure were observed. Because of excellent bond strength and repairing effects, the RC beams repaired by LMC at compression or tension zone showed over 100% recovery from damaged structures. The RC beams overlaid by LMC showed significant improvement at load carrying capacity as overlay thickness increases. However, the beams repaired of tension zone without shear stirrups almost showed no strengthen effect, and indicated an interfacial failures. The interfacial behavior was estimated by numerical method adopting the concept of shear flow.