• Title/Summary/Keyword: tyrosine phosphatase

Search Result 159, Processing Time 0.035 seconds

Anti-Diabetic and Anti-Inflammatory Effects of Green and Red Kohlrabi Cultivars (Brassica oleracea var. gongylodes)

  • Jung, Hyun Ah;Karki, Subash;Ehom, Na-Yeon;Yoon, Mi-Hee;Kim, Eon Ji;Choi, Jae Sue
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.281-290
    • /
    • 2014
  • The aim of the present study was to evaluate the anti-diabetic, anti-inflammatory, antioxidant potential, and total phenolic content (TPC) of green and red kohlrabi cultivars. Anti-diabetic and anti-inflammatory activities were evaluated via protein tyrosine phosphatase (PTP1B) and rat lens aldose reductase inhibitory assays and cell-based lipopolysaccharide (LPS)-induced nitric oxide (NO) inhibitory assays in RAW 264.7 murine macrophages. In addition, scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical, and peroxynitrite ($ONOO^-$) were used to evaluate antioxidant potential and TPC was selected to assess phytochemical characteristics. Between the two kohlrabi cultivars, red kohlrabi (RK) had two times more TPC than green kohlrabi (GK) and showed significant antioxidant effects in DPPH, ABTS, and $ONOO^-$ scavenging assays. Likewise, methanol (MeOH) extracts of RK and GK inhibited LPS-induced NO production in a dose dependent manner that was further clarified by suppression of iNOS and COX-2 protein production. The MeOH extracts of RK and GK exhibited potent inhibitory activities against PTP1B with the corresponding $IC_{50}$ values of $207{\pm}3.48$ and $287{\pm}3.22{\mu}g/mL$, respectively. Interestingly, the RK MeOH extract exhibited significantly stronger anti-inflammatory, anti-diabetic, and antioxidant effects than that of GK MeOH extract. As a result, our study establishes that RK extract with a higher TPC might be useful as a potent anti-diabetic, antioxidant, and anti-inflammatory agent.

Tetrachloroauric Acid Depresses the Activation Processes of Phagocytic Cells

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.377-384
    • /
    • 1998
  • Gold compounds depress phagocytic cell responses, including chemotaxis, and respiratory burst. However, the effects of gold compounds on the function of phagocytic cells are variable according to the preparation of medicine. In this study, effect of tetrachloroauric acid on activated neutrophil responses, including respiratory burst, lysosomal enzyme release and change of intracellular $Ca^{2+}$ level and on the synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by macrophages was studied. This study further examines how gold compounds affect the activation processes. The respiratory burst stimulated by complement C5a, degraded IgG and PMA in neutrophils was inhibited by tetrachloroauric acid. In contrast to C5a and degraded IgG, PMA-stimulated superoxide production was weakly inhibited by tetrachloroauric acid. Staurosporine, genistein, EGTA and verapamil inhibited superoxide and $H_2O_2$ production caused by C5a and degraded IgG. PMA-stimulated superoxide production was inhibited by staurosporine but was not affected by genistein. Tetrachloroauric acid, genistein, EGTA and verapamil inhibited the release of acid phosphatase and myeloperoxidase, while the effect of staurosporine was not detected. The synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by $interleukin-1{\beta}$ in macrophages was inhibited by tetrachloroauric acid. Preincubation with tetrachloroauric acid, genistein, EGTA and verapamil, the elevation of [$Ca^{2+}_i$] evoked by C5a was inhibited. Store-regulated $Ca^{2+}$ entry in thapsigargin-pretreated neutrophils was decreased by the addition of tetrachloroauric acid and genistein. The effect of staurosporine on intracellular $Ca^{2+}$ mobilization was not observed. In conclusion, tetrachloroauric acid may suppress neutrophil responses through its inhibitory action on elevation of intracellular $Ca^{2+}$ level and protein kinase C. It might exhibit an inhibitory effect on the action of protein tyrosine kinase. Tetrachloroauric acid depresses cytokine production by macrophages.

  • PDF

Different Gene Expression on Human Blood by Administration of OLT-2 (OLT-2의 복용에 의한 인간 혈중 유전자 발현 변화)

  • Cha, Min-Ho;Moon, Jin-Seok;Jeon, Byung-Hun;Yoon, Yong-Gab;Yoon, Yoo-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.853-860
    • /
    • 2006
  • This study was performed to investigate genes which are differently expressed in human blood by administrating of OLT-2. OLT-2 was medical precipitation composed of three medicinal herbs, Ginseng Radix, Astragali Radix, Glycyrrhizae Radix, and anti-leukemia effect of it was evaluated from Byung Hun Jeon of Wonkwang University this study was approved by Institutional Review Board of Korea Institute of Oriental Medicine (Taejeon, Korea) and four male subjects participated in this study. Gene expressions were evaluated by cDNA chip, in which 24,000 genes were spotted. Hierarchical cluster and biological process against the genes, which expression changes were more than 1.6 fold, were constructed by cluster 3.0 providing Stanford University and EASE(http://apps1 .maid.nih.gov/DAVID). Five groups were clustered according to their expression patterns. Group A contained gene decreased by OLT-2 and increased genes by OLT-2 were involved in Group B, C, D. In biological process, expression of genes involved in cytokine or cell calcium signaling, such as interleukin 18 and G-protein beta 4 were increased, but protein tyrosine phosphatase receptor type c, which function is cell adhesion between antigen-presenting cell and T or B-cell, was decreased by OLT-2. This study provides the most comprehensive available survey of gene expression changes in response to anti-leukemia effect of OLT-2 in human blood.

Purification of ginseng rare sapogenins 25-OH-PPT and its hypoglycemic, antiinflammatory and lipid-lowering mechanisms

  • Xu, Jing;Liu, Hairong;Su, Guangyue;Ding, Meng;Wang, Wei;Lu, Jincai;Bi, Xiuli;Zhao, Yuqing
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.86-97
    • /
    • 2021
  • Background: Panax ginseng Meyer has been used as a nourishing edible herb in East Asia for thousands of years. 25-OH-PPT was first discovered as a natural rare triterpenoid saponin in ginseng stems and leaves by our group. Research found that it showed strong inhibitory effects on α-glucosidase and protein tyrosine phosphatase 1B, and protected cardiocytes (H9c2) through PI3K/Akt pathway. Methods: In the research, in order to optimize the 25-OH-PPT enrichment process, optimal macroporous resins and optimal purification conditions were studied. Meanwhile, the hypoglycemic effect and mechanism of 25-OH-PPT were evaluated by using STZ to establish insulin-dependent diabetic mice and the spontaneous type 2 diabetes DB/DB mice. Results and Conclusion: Research found that 25-OH-PPT can reduce blood glucose and enhance glucose tolerance in STZ model mice. It increases insulin sensitivity by upregulating GLUT4 and AMPK in skeletal muscle, and activating insulin signaling pathways. In DB/DB mice, 25-OH-PPT achieves hypoglycemic effects mainly by activating the insulin signaling pathway. Meanwhile, through the influence of liver inflammatory factors and lipids in serum, it can be seen that 25-OH-PPT has obvious anti-inflammatory and lipid-lowering effects. These results provide new insights into the study of ginseng as a functional food.

In Silico Analysis of Potential Antidiabetic Phytochemicals from Matricaria chamomilla L. against PTP1B and Aldose Reductase for Type 2 Diabetes Mellitus and its Complications

  • Hariftyani, Arisvia Sukma;Kurniawati, Lady Aqnes;Khaerunnisa, Siti;Veterini, Anna Surgean;Setiawati, Yuani;Awaluddin, Rizki
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.99-114
    • /
    • 2021
  • Type 2 diabetes mellitus (T2DM) and its complications are important noncommunicable diseases with high mortality rates. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase inhibitors are recently approached and advanced for T2DM and its complications therapy. Matricaria chamomilla L. is acknowledged as a worldwide medicinal herb that has many beneficial health effects as well as antidiabetic effects. Our research was designed to determine the most potential antidiabetic phytochemicals from M. chamomilla employing in silico study. 142 phytochemicals were obtained from the databases. The first screening employed iGEMdock and Swiss ADME, involving 93 phytochemicals. Finally, 30 best phytochemicals were docked. Molecular docking and visualization analysis were performed using Avogadro, AutoDock 4.2., and Biovia Discovery Studio 2016. Molecular docking results demonstrate that ligand-protein interaction's binding affinities were -5.16 to -7.54 kcal/mol and -5.30 to -12.10 kcal/mol for PTP1B and aldose reductase protein targets respectively. In silico results demonstrate that M. chamomilla has potential antidiabetic phytochemical compounds for T2DM and its complications. We recommended anthecotulide, quercetin, chlorogenic acid, luteolin, and catechin as antidiabetic agents due to their binding affinities against both PTP1B and aldose reductase protein. Those phytochemicals' significant efficacy and potential as antidiabetic must be investigated in further advanced research.

Evaluation of Immunomodulatory and Biological Effects of Aquilaria crassna Extracts (침향 추출물의 면역조절 및 생리활성 분석)

  • You-Lim, Hwang;Kwang-Youn, Kim;Sun Nyoung, Yu;Kwang-Il, Park;Soon-Cheol, Ahn
    • Herbal Formula Science
    • /
    • v.30 no.4
    • /
    • pp.249-257
    • /
    • 2022
  • Objectives : Aquilaria crassna is a traditional herbal medicine, which is used to treat allergies, diabetes, neurological diseases. Recently, Aquilaria crassna extracts have been reported in anti-bacterial and anti-inflammatory activities. In this study, various solvents fraction of Aquilaria crassna were investigated on various physiological activities. Methods : According to the polarity, the solvents fraction of Aquilaria crassna were confirmed through TLC, and the activities of the extracts were confirmed in anti-diabetes, anti-obesity, whitening, anti-gout, and anti-inflammation. Results : TLC results showed that ACM and ACM/E have similar patterns and most of the components were transferred to ACM/E. Treatment with ACM and ACM/E fraction were significantly decreased the generation of NO in lipopolysaccharide (LPS)-stimulated macrophage cells. Analysis of biological activities such as α-glucosidase, protein tyrosine phosphatase (PTP1B), tyrosinase, xanthine oxidase (XO) and pancreatic lipase inhibition, showed that ACM and ACM/E have more inhibitory effects than other fractions. Conclusions : Therefore, the results of the present study clearly demonstrate that Aquilaria crassna and its constituents might be beneficial in the prevention or treatment of immune-regulating effects.

Effects of Herbal Complex on Blood Glucose in Streptozotocin-induced Diabetic Rats and in Mice Model of Metabolic Syndrome (생약복합제의 Streptozotocin 유발 당뇨 및 대사성증후군 모델 동물에서의 혈당에 미치는 효과)

  • Park, Han-Seok;Lee, Yeon-Sil;Choi, Se-Jin;Kim, Jin-Kyu;Lee, Yun-Lyul;Kim, Hyun-Gwen;Koo, Sam-Hoi;Ku, Dae-Hoy;Ki, Seung-Il;Lim, Soon-Sung
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.3
    • /
    • pp.196-204
    • /
    • 2009
  • This study was carried out to investigate the in vivo and in vitro inhibitory effect of a traditional herbal complex (HC) extract prepared from a mixture of four oriental herbs (Dioscorea Rhizoma, Glycine soja Sieb. et Zucc, Bombycis corpus, Fermented Glycine soja) that have been widely used for the treatment and prevention of diabetes mellitus on hyperglycemia. The water extract of HC showed potent inhibitory effect on $\alpha$-glucosidase with $IC_{50}$ value of 1.24 mg/mL. Additionally, the ethanol extract of HC was also found to exhibit significant inhibitory effect against protein tyrosine phosphatase $1{\beta}$ ($PTP1{\beta}$), which is known as a major regulator of both insulin and leptin signaling. In the $PTP1{\beta}$ inhibitory assay, the most active n-hexane fraction obtained from the ethanol extract of HC, was identified as a mixture of fatty acid derivatives by gas chromatography-mass spectrometry (GC-MS). In high-fat diet-low dose streptozotocin (STZ)-induced diabetic rat, the water extract of HC improved the oral glucose intolerance as compared with rosiglitazone. HC also caused a marked decrease of body weight and fasting blood glucose and a significant improvement on glucose tolerance in metabolic syndrome mice model. These findings support that this traditional HC may be useful in the control of blood glucose in diabetes mellitus and metabolic syndrome.

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.

Proteomic Analysis and the Antimetastatic Effect of N-(4methyl)phenyl-O-(4-methoxy) phenyl-thionocarbamate-Induced Apoptosis in Human Melanoma SK-MEL-28 cells

  • Choi Su-La;Choi Yun-Sil;Kim Young-Kwan;Sung Nack-Do;Kho Chang-Won;Park Byong-Chul;Kim Eun-Mi;Lee Jung-Hyung;Kim Kyung-Mee;Kim Min-Yung;Myung Pyung-Keun
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.224-234
    • /
    • 2006
  • We employed human SK-MEL-28 cells as a model system to identify cellular proteins that accompany N-(4-methyl)phenyl-O-(4-methoxy)phenyl-thionocarbamate (MMTC)-induced apoptosis based on a proteomic approach. Cell viability tests revealed that SK-MEL-28 skin cancer cells underwent more cell death than normal HaCaT cells in a dose-dependent manner after treatment with MMTC. Two-dimensional electrophoresis in conjunction with matrixassisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis or computer matching with a protein database further revealed that the MMTC-induced apoptosis is accompanied by increased levels of caspase-1, checkpoint suppressor-1, caspase-4, NF-kB inhibitor, AP-2, c-Jun-N-terminal kinase, melanoma inhibitor, granzyme K, G1/S specific cyclin D3, cystein rich protein, Ras-related protein Rab-37 or Ras-related protein Rab-13, and reduced levels of EMS (oncogene), ATP synthase, tyrosine-phosphatase, Cdc25c, 14-3-3 protein or specific structure of nuclear receptor. The migration suppressing effect of MMTC on SK-MEL-28 cell was tested. MMTC suppressed the metastasis of SK-MEL-8 cells. It was also identified that MMTC had little angiogenic effect because it did not suppress the proliferation of HUVEC cell line. These results suggest that MMTC is a novel chemotherapeutic and metastatic agents against the SK-MEL-28 human melanoma cell line.

Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

  • Reddy, Kondreddy Eswar;Lee, Woong;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Woon;Yu, Dongjo;Cho, Ara;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.138-148
    • /
    • 2018
  • Objective: Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods: Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results: A total of 186 differentially expressed genes (DEGs) were screened (120 upregulated and 66 downregulated). Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE), tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4), proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8), and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, ${\alpha}$-aminoadipic semialdehyde dehydrogenase, Ig lambda chain c region, pyruvate dehydrogenase kinase, isozyme 4, carboxylesterase 1), were suppressed by DON and ZEN. Conclusion: In summary, our results indicate that high concentrations of DON and ZEN suppress the inflammatory response in kidneys, leading to potential effects on immune homeostasis.