Browse > Article
http://dx.doi.org/10.20307/nps.2021.27.2.99

In Silico Analysis of Potential Antidiabetic Phytochemicals from Matricaria chamomilla L. against PTP1B and Aldose Reductase for Type 2 Diabetes Mellitus and its Complications  

Hariftyani, Arisvia Sukma (Faculty of Medicine, Universitas Airlangga)
Kurniawati, Lady Aqnes (Faculty of Medicine, Universitas Airlangga)
Khaerunnisa, Siti (Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga)
Veterini, Anna Surgean (Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital)
Setiawati, Yuani (Department of Anatomy-Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga)
Awaluddin, Rizki (Department of Pharmacy. Faculty of Health Science, University of Darussalam Gontor)
Publication Information
Natural Product Sciences / v.27, no.2, 2021 , pp. 99-114 More about this Journal
Abstract
Type 2 diabetes mellitus (T2DM) and its complications are important noncommunicable diseases with high mortality rates. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase inhibitors are recently approached and advanced for T2DM and its complications therapy. Matricaria chamomilla L. is acknowledged as a worldwide medicinal herb that has many beneficial health effects as well as antidiabetic effects. Our research was designed to determine the most potential antidiabetic phytochemicals from M. chamomilla employing in silico study. 142 phytochemicals were obtained from the databases. The first screening employed iGEMdock and Swiss ADME, involving 93 phytochemicals. Finally, 30 best phytochemicals were docked. Molecular docking and visualization analysis were performed using Avogadro, AutoDock 4.2., and Biovia Discovery Studio 2016. Molecular docking results demonstrate that ligand-protein interaction's binding affinities were -5.16 to -7.54 kcal/mol and -5.30 to -12.10 kcal/mol for PTP1B and aldose reductase protein targets respectively. In silico results demonstrate that M. chamomilla has potential antidiabetic phytochemical compounds for T2DM and its complications. We recommended anthecotulide, quercetin, chlorogenic acid, luteolin, and catechin as antidiabetic agents due to their binding affinities against both PTP1B and aldose reductase protein. Those phytochemicals' significant efficacy and potential as antidiabetic must be investigated in further advanced research.
Keywords
Matricaria chamomilla L.; type 2 diabetes mellitus; in silico; molecular docking; PTP1B; aldose reductase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Grewal, A. S.; Bhardwaj, S.; Pandita, D.; Lather, V.; Sekhon, B. S. Mini Rev. Med. Chem. 2016, 16, 120-162.   DOI
2 Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M. K. Pharmacogn. Rev. 2011, 5, 82-95.   DOI
3 Ubessi, C.; Tedesco, S. B.; de Bona da Silva, C.; Baldoni, M.; Krysczun, D. K.; Heinzmann, B. M.; Rosa, I. A.; Mori, N. C. J. Ethnopharmacol. 2019, 239, 111907.   DOI
4 Al-Dabbagh, B.; Elhaty, I. A.; Elhaw, M.; Murali, C.; Al-Mansoori, A.; Awad, B.; Amin, A. BMC Res. Notes 2019, 12, 1-8.   DOI
5 Agatonovic-Kustrin, S.; Babazadeh-Ortakand, D.; Morton, D. W.; Yusof, A. P. J. Chromatogr. A. 2015, 1385, 103-110.   DOI
6 Kato, A.; Minoshima, Y.; Yamamoto, J.; Adachi, I.; Watson, A. A.; Nash, R. J. J. Agric. Food Chem. 2008, 56, 8206-8211.   DOI
7 Salazar-Gomez, A.; Ontiveros-Rodriguez, J. C.; Pablo-Perez, S. S.; Vargas-Diaz, M. E.; Garduno-Siciliano, L. S. Afr. J. Bot. 2020, 135, 240-251.   DOI
8 Discovery Studio. Discovery Studio Life Science Modeling and Simulations; Accelrys, 2008.
9 Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2001, 46. 3-26   DOI
10 Khaerunnisa, S.; Suhartati, S.; Awaluddin, R. Penelitian In Silico untuk Pemula; Airlangga University Press: Indonesia, 2020, pp 67-89
11 Verma, M.; Gupta, S. J.; Chaudhary. A.; Garg, V. K. Bioorg. Chem. 2017, 70, 267-283.   DOI
12 Kousaxidis, A.; Petrou, A.; Lavrentaki, V.; Fesatidou, M.; Nicolaou, I.; Geronikaki, A. Eur. J. Med. Chem. 2020, 207, 112742.   DOI
13 Hajizadeh-Sharafabad, F.; Varshosaz, P.; Jafari-Vayghan, H.; Alizadeh, M.; Maleki, V. Complement. Ther. Med. 2020, 48, 102284.   DOI
14 Saeidnia, S.; Manayi, A.; Gohari, A. R.; Abdollahi, M. European J. Med. Plants 2014, 4, 590-609.   DOI
15 Wianowska, D.; Gil, M. Phytochem. Rev. 2019, 18, 273-302.   DOI
16 Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P.; Selvaraj, J. Toxicol. Mech. Methods 2019, 29, 276-290.   DOI
17 Wang, J.; Huang, M.; Yang, J.; Ma, X.; Zheng, S.; Deng, S.; Huang, Y.; Yang, X.; Zhao, P. Food Nutr. Res. 2017, 61, 1364117.   DOI
18 Reza, M. S.; Shuvo, M. S. R.; Hassan, M. M.; Basher, M. A.; Islam M. A.; Naznin, N. E.; Jafrin, S.; Ahmed, K. S.; Hossain, H.; Daula, A. F. M. S. U. Biomed. Pharmacother. 2020, 132, 110942.   DOI
19 Lin, Y.; Liu, P. G.; Liang, W. Q.; Hu, Y. J.; Xu, P.; Zhou, J.; Pu, J. B.; Zhang, H. J. Phytomedicine 2018, 41, 54-61.   DOI
20 Chen, L.; Teng, H.; Cao, H. Food Chem. Toxicol. 2019, 127, 182-187.   DOI
21 Du, X.; Li, Y.; Xia, Y. L.; Ai, S. M.; Liang, J.; Sang, P.; Ji, X. L.; Liu, S. Q. Int. J. Mol. Sci. 2016, 17, 144.   DOI
22 Jaishree, V.; Narsimha, S. Biomed. Pharmacother. 2020, 130, 110561.   DOI
23 Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A. K. PLoS ONE, 2010, 5, 1-10.   DOI
24 Talbot, E. P. A. Towards the synthesis of anthecularin and anthecotulides; Faculty of Physical Sciences, University of Oxford: United Kingdom, 2011, pp 1-8.
25 Bule, M.; Abdurahman, A.; Nikfar, S.; Abdollahi, M.; Amini, M. Food Chem. Toxicol. 2019, 125, 494-502.   DOI
26 Eid, H. M.; Haddad, P. S. Curr. Med. Chem. 2017, 24, 355-364.   DOI
27 Ali, M. Y.; Jannat, S.; Rahman, M. M. Comput. Toxicol. 2020, 17, 100141
28 Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Food Control 2019, 106, 106712.   DOI
29 Bursal, E.; Taslimi, P.; Goren, A. C.; Gulcin, I. Biocatal. Agric. Biotechnol. 2020, 28, 101711.   DOI
30 Lodhi, S.; Vadnere, G. P.; Patil, K. D.; Patil, T. P. J. Tradit. Complement. Med. 2020, 10, 60-69.   DOI
31 Daina, A.; Michielin, O.; Zoete, V. Sci. Rep. 2017, 7, 42717   DOI
32 Li, L.; Luo, W.; Qian, Y.; Zhu, W.; Qian, J.; Li, J.; Jin, Y.; Xu, X.; Liang, G. Phytomedicine 2019, 59, 152774.   DOI
33 Parlinska-Wojtan, M.; Kus-Liskiewicz, M.; Depciuch, J.; Sadik, O. Bioprocess Biosyst. Eng. 2016, 39, 1213-1223.   DOI
34 Petronilho, S.; Maraschin, M.; Coimbra, M. A.; Rocha, S. M. Ind. Crops Prod. 2012, 40, 1-12.   DOI
35 Zemestani, M.; Rafraf, M.; Asghari-Jafarabadi, M. Nutrition 2016, 32, 66-72.   DOI
36 Addepalli, V.; Suryavanshi, S. V. Biomed. Pharmacother. 2018, 108, 1517-1523.   DOI
37 Saeidnia, S.; Abdollahi, M.; Toxicol. Appl. Pharmacol. 2013, 273, 442-455.   DOI
38 Brownlee, M. Diabetes 2005, 54, 1615-1625.   DOI
39 International Diabetes Federation. IDF DIABETES ATLAS vol. 8th Edition; Karuranga, S.; Fernandes, J. R.; Huang, Y.; Malanda, B. Ed; International Diabetes Federation; Belgium, 2017, pp 14-95.
40 American Diabetes Association. Diabetes Care: Standards of Medical Care in Diabetes; Riddle, M. C. Ed; USA, 2019, pp S13-S28.
41 Hussain, H.; Green, I. R.; Abbas, G.; Adekenov, S. M.; Hussain, W.; Ali, I. Expert Opin. Ther. Pat. 2019, 29, 689-702.   DOI
42 Zhu, F.; Li, X. X.; Yang, S. Y.; Chen, Y. Z. Trends Pharmacol. Sci. 2018, 39, 229-231.   DOI
43 Hannan, M. A.; Sohag, A. A. M.; Dash, R.; Haqu e, M. N.; Mohibbullah, M.; Oktaviani, D. F.; Hossain, M. T.; Choi, H. J.; Moon, I. S. Phytomedicine 2020, 69, 153201.   DOI
44 Chaturvedi, D.; Dwivedi, P. K. In Discovery and Development of Antidiabetic Agents from Natural Products: Natural Product Drug Discovery; Brahmachari, G. Ed; Elsevier Inc; USA, 2017, pp 185-207.
45 Dowarah, J.; Singh, V. P. Bioorg. Med. Chem. 2020, 28, 115263.   DOI
46 Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Molecules 2020, 25, 1987.   DOI
47 Chaves, P. F. P.; Hocayen, P.A.S.; Dallazen, J. L.; de Paula Werner, M. F.; Iacomini, M.; Andreatini, R.; Cordeiro, L. M. C. Int. J. Biol. Macromol. 2020, 164, 1675-1682.   DOI
48 Halim, M.; Halim, A. Diabetes Metab. Syndr. 2019, 13, 1165-1172.   DOI
49 Qian, S.; Zhang, M.; He, Y.; Wang, W.; Liu, S. Future Med. Chem. 2016, 8, 1239-1258.   DOI
50 Yan, L. J. Animal Model Exp. Med. 2018, 1, 7-13.   DOI
51 Diaz, A.; Vargas-Perez, I.; Aguilar-Cruz, L.; Calva-Rodriguez, R.; Trevino, S.; Venegas, B.; Contreras-Mora, I. R. Rev. Bras. Farmacogn. 2014, 24, 419-424.   DOI