• Title/Summary/Keyword: typhoon-surge characteristics

Search Result 26, Processing Time 0.017 seconds

Storm Surge Characteristics According to the Local Peculiarity in Gyeongnam Coast (경남연안의 지역특성에 따른 폭풍해일고의 변동)

  • Hur Dong-Soo;Yeom Gyeong-Seon;Kim Ji-Min;Kim Do-Sam;Bae Ki-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.45-53
    • /
    • 2006
  • Each year, the south coast of Korea is badly damaged from storm surge. The damages are greatly dependent upon the local peculiarities of the region where the storm surge occurs. So, in order to prevent/reduce recurrence of the disaster, it is very important to investigate the fluctuation characteristics of the storm surge height, related to the local peculiarities at each coastal area where occurrence of the disaster is expected. In this paper, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the Gyeongnam coast (southeast coast of Korea). Typhoons of Sarah (5914), Thelma (8705) and Maemi (0314), which caused terrible damage to the coastal area in the southeast coast of Korea in the past, were used forstorm surge simulations. Moreover, the storm surge due to virtual typhoons, which were combined the characteristics of each proposed typhoons (Maemi, Sarah, Thelma)with the travel route of other typhoon, was predicted. As expected, the results revealed that the storm surge heights are enhanced at the coastal regions with the concavity like a long-shaped bay. Also, the storm surge heights, due to each typhoon, were compared and discussed at major points along the Gyeongnam coast, related to the local peculiarities, as well as the characteristics and the travel route of typhoon.

Estimation of Storm Surges on the Coast of Busan (부산연안에서 폭풍해일고의 추정)

  • Hur Dong-Soo;Yeom Gyeong-Seon;Kim Ji-Min;Kim Do-Sam;Bae Ki-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.37-44
    • /
    • 2006
  • Each year, the coast of Busan is badly damaged, due to storm surge. The damages are greatly dependent upon the local peculiarities of the region in which the storm surge occurs. So, in order to prevent/reduce recurrence of the disaster due to the storm surge, it is very important to investigate the fluctuation characteristics of the storm surge height, related to the local peculiarities at each coastal area in which the occurrence of the disaster is expected. In this paper, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast of Busan Typhoons of Sarah (5914), Thelma (8705) and Maemi (0314), which caused terrible damage to the coastal areas alongthe coast of Busan in the past, were taken as an object of the storm surge simulations. Moreover, the storm surge due to virtual typhoons, which were combined with the characteristics of each proposed typhoon (Maemi, Sarah, Thelma), compared to the travel routes of other typhoons, was predicted. As expected, the results revealed that the storm surge heights are enhanced at the coastal region with the concavity like a long-shaped bay. Also, the storm surge heights, due to each typhoon, were compared and discussed at major points along the coast of Busan, related to the local peculiarities, as well as the characteristics and the travel route of the typhoon.

Frequency Analysis on Surge Height by Numerical Simulation of a Standard Typhoon (표준태풍 모의를 통한 해일고 빈도해석)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.284-291
    • /
    • 2016
  • A standard typhoon, which results in extreme wind speeds having various return period, can be reconstructed by combination of typhoon parameter informations(Kang et al., 2016). The aim of this study is to present a kind of surge-frequency analysis method by numerical simulation of a standard typhoon at Yeonggwang. MIKE21 was adopted as a numerical model and was proved to simulate the surge phenomena of the typhoon BOLAVEN(1215) well at several sites of the Western Coast. The simulation results with change of typhoon track which reflects typhoon-surge characteristics of the Western Coast show to have something in common with the observational results. This method is considered to be very efficient method on the point of simulating only one typhoon, while existing methods need to simulate a lot of typhoons.

Patterns of Water Level Increase by Storm Surge and High Waves on Seawall/Quay Wall during Typhoon Maemi (태풍 매미 내습시 해일$\cdot$고파랑에 의한 호안$\cdot$안벽에서의 수위증가 패턴 고찰)

  • Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.22-28
    • /
    • 2005
  • We investigated the characteristics of the overflow/wave overtopping, induced by the storm surge and high waves in Masan bay and Busan Coast during Typhoon 'Maemi', which landed at the southeast coast of the Korean peninsula on September, of 2003, causing a severe inundation disaster. Characteristics of the water level, increase by the overflow / wave overtopping, were discussed in two patterns. One is the increase of water level in the region, located inside of a bay, like Masan fishing port, and the waves are relatively small. The other is in the open sea, in which the waves act directly, as on the seawall in Suyong bay. In the former region, the water level increase was affected by the storm surge, as well as the long period oscillation and waves. In Masan fishing port, about $80\%$ of the water level increase on the quay wall was caused by the storm surge. In the latter one, it was greatly affected by the wave run-up. In Suyong bay, about $90\%$ of the water level increase on the seawall was caused by the wave run-up.

Characteristics of Nearshore Surge-Intensity (국내 연안의 해일강도 특성)

  • Kang, Ju-Whan;Kim, Yang-Seon;Cho, Hong-Yeon;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.458-465
    • /
    • 2011
  • Characteristics of nearshore surge intensity were investigated by analyzing the tide data at 20 tidal stations. Statistical analysis of the surge data show that surge heights at the western coast are far greater than those at southern and eastern coasts, implying that each coast has its own classified characteristics. Surge height data greater than 30 cm were chosen and their intensities were calculated, and then, typhoon-induced surges were separated. The results show that while surge intensity at the western coast is conspicuous in winter due to the monsoon, it is conspicuous in summer due to the typhoon at other coasts. EOF analysis show that the 1st eigenvector at the western coast is prominent, which is considered to be consistent with above mentioned results.

Typhoon-Surge Characteristics and the Highest High Water Levels at the Western Coast (서해안의 태풍해일특성과 고극조위)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.50-61
    • /
    • 2019
  • The aspects of typhoon-induced surges were classified into three types at the Western coast, and their characteristics were examined. The typhoons OLGA (9907) and KOMPASU (1007) were the representative steep types. As they pass close to the coasts with fast translation velocity, the time of maximum surge is unrelated to tidal phase. However, typhoons PRAPIROON (0012) and BOLAVEN (1215) were the representative mild types, which pass at a long distance to the coasts with slow translation velocity, and were characterized by having maximum surge time is near low tide. Meanwhile, typhoons MUIFA (1109) and WINNIE (9713) can be classified into mild types, but they do not show the characteristics of the mild type. Thus they are classified into propagative type, which are propagated from the outside. Analyzing the annual highest high water level data, the highest water level ever had been recorded when the WINNIE (9713) had attacked. At that time, severe astronomical tide condition overlapped modest surge. Therefore, if severe astronomical tide encounter severe surge in the future, tremendous water level may be formed with very small probability. However, considering that most of the huge typhoons are mild type, time of maximum surge tends to occur at low tide. In case of estimating the extreme water level by a numerical simulation, it is necessary not only to apply various tide conditions and accompanying tide-modulated surge, but also to scrutinize typhoon parameters such as translation velocity and so on.

Effects of Typhoon's Characteristics on the Storm Surge at Gyeongnam Coastal Zone (태풍의 특성변화에 따른 경남해역 해일양상 고찰)

  • Kang, Ju-Whan;Park, Seon-Jung;Moon, Seung-Rok;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Linear-tracked typhoons were simulated to investigate the effect of parameter sensitivity at Gyeongnam coastal zone. To do this, appropriateness of the linear-tracked MAEMI(0314) was tested and 175 scenarios were simulated on the basis of virtual MAEMI. The results show surge heights are relatively large at Masan and Tongyeong, and it can be attributed to topographical effects. At Masan, 2.5 m-surge height is probable with the same intensity but slightly different track from the real typhoon MAEMI. At the other stations, surge heights induced by real MAEMI are nearly same as the maximum heights of the virtual typhoons, which indicates the real track of the typhoon MAEMI was almost the most severe one. Surge heights caused by the barometric effect are higher than those by the wind effect, and the former effect shows the maximum at the eye of typhoon.

Typhoon-surge Characteristics in Relation with the Tide-surge Interaction (조석-해일 비선형성과 관련된 태풍-해일 특성)

  • Kang, Ju Whan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.25-37
    • /
    • 2015
  • Tide-surge interaction during typhoon periods has been analyzed. The quantitative analysis of the Chi-square test shows that the interaction is most prominent at the Southwestern coast whereas the Western and the Southeastern regions are not. Patterns of surge type were divided into two groups, that is, steep type and mild type. Then, the interaction was turned out to be more prominent for mild type data. The weak interaction at the Western region is considered due to negative surges when the south-track typhoons attack. However, the interaction is remarkable when the west-track typhoons attack. The weak interaction at the Southeastern coast is, on the other hand, considered due to abundance of the steep type typhoons. Thus, inundation risk would be so apprehensive at that region because large-scale surge might be caused even at high tide.

Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons (확률론적 합성태풍을 이용한 서남해안 빈도 해일고 산정)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.241-252
    • /
    • 2019
  • To choose appropriate countermeasures against potential coastal disaster damages caused by a storm surge, it is necessary to estimate the frequency of storm surge heights estimation. As the coastal populations size in the past was small, the tropical cyclone risk model (TCRM) was used to generate 176,689 synthetic typhoons. In simulation, historical paths and central pressures were incorporated as a probability density function. Moreover, to consider the typhoon characteristics that resurfaced or decayed after landfall on the southeast coast of China, incorporated the shift angle of the historical typhoon as a function of the probability density function and applied it as a damping parameter. Thus, the passing rate of typhoons moving from the southeast coast of China to the south coast has improved. The characteristics of the typhoon were analyzed from the historical typhoon information using correlations between the central pressure, maximum wind speed ($V_{max}$) and the maximum wind speed radius ($R_{max}$); it was then applied to synthetic typhoons. The storm surges were calculated using the ADCIRC model, considering both tidal and synthetic typhoons using automated Perl script. The storm surges caused by the probabilistic synthetic typhoons appear similar to the recorded storm surges, therefore this proposed scheme can be applied to the storm surge simulations. Based on these results, extreme values were calculated using the Generalized Extreme Value (GEV) method, and as a result, the 100-year return period storm surge was found to be satisfactory compared with the calculated empirical simulation value. The method proposed in this study can be applied to estimate the frequency of storm surges in coastal areas.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.