DOI QR코드

DOI QR Code

Typhoon-surge Characteristics in Relation with the Tide-surge Interaction

조석-해일 비선형성과 관련된 태풍-해일 특성

  • Kang, Ju Whan (Dept. of Civil Engineering, Mokpo National University)
  • 강주환 (목포대학교 토목공학과)
  • Received : 2015.01.05
  • Accepted : 2015.02.16
  • Published : 2015.02.28

Abstract

Tide-surge interaction during typhoon periods has been analyzed. The quantitative analysis of the Chi-square test shows that the interaction is most prominent at the Southwestern coast whereas the Western and the Southeastern regions are not. Patterns of surge type were divided into two groups, that is, steep type and mild type. Then, the interaction was turned out to be more prominent for mild type data. The weak interaction at the Western region is considered due to negative surges when the south-track typhoons attack. However, the interaction is remarkable when the west-track typhoons attack. The weak interaction at the Southeastern coast is, on the other hand, considered due to abundance of the steep type typhoons. Thus, inundation risk would be so apprehensive at that region because large-scale surge might be caused even at high tide.

태풍발생시기의 조석-해일 비선형 특성을 분석하였다. Chi-square test를 통한 정량적 해석결과 목포를 비롯한 서남해안 지역에서 비선형성이 가장 우세하였고 서해안과 남동해안에서는 뚜렷하게 나타나지는 않고 있다. 태풍-해일 발생패턴을 첨두형과 지속형으로 구분하여 해석하였는데 조석-해일 비선형성은 지속형에서 다소 높게 나타나는 것으로 확인되고 있다. 서해안의 경우 저조시 해일발생빈도가 높지 않게 나타나는 이유는 남해안경로 태풍에 의한 음해일 발생이 많은 것과 무관치 않은 것으로 보인다. 그러나 서해안경로 태풍에 대해서는 태풍통과 이후 저조시에 최대해일고가 발생하는 조석-해일 비선형효과가 두드러지게 나타나고 있다. 남동해안의 경우에는 첨두형 태풍이 잦아 비선형효과에 의한 저조시 해일발생빈도가 낮은 것으로 분석되고 있다. 이에 따라 남해안경로 태풍의 경우 통과인근지역에서는 고조시에도 대규모 해일발생이 가능하므로 태풍-해일에 의한 범람 위험도가 매우 높은 것으로 판단된다.

Keywords

References

  1. Brown, J., Souza, A. and Wolf, J. (2010). An 11-year validation of wave-surge modelling in the Irish Sea, using a nested POL-COMS-WAM modelling system, Ocean Modelling, 33, 118-128. https://doi.org/10.1016/j.ocemod.2009.12.006
  2. Flowerdew, J., Horsburgh, K., Wilson, C., Mylne, K. (2010). Development and evaluation of an ensemble forecasting system for coastal storm surges, Quarterly Journal of the Royal Meteorological Society, 136, 1444-1456. https://doi.org/10.1002/qj.648
  3. Goring, D.G., Stephens, S.A., Bell, R.G. and Pearson, C.P. (2011). Estimation of extreme sea levels in a tide-dominated environment using short data records. Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(3), 150-159. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000071
  4. Haigh, I., Nicholls, R. and Wells, N. (2010). Assesing changes in extreme sea levels: Application to the English Channel, 1900-2006. Continental Shelf Research, 30, 1042-1055. https://doi.org/10.1016/j.csr.2010.02.002
  5. Horsburgh, K.J. and Wilson, C. (2007). Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J. of Geophysical Research, 112, 1-13.
  6. Kang, J.W., Kim, Y.-S., Yoon, Y.-K. and Shim, J.-S. (2014). Appearance of tide-surge interaction along the West/South coasts, Journal of Korean Society of Coastal and Ocean Eng., 26(6), 352-358. (in Korean) https://doi.org/10.9765/KSCOE.2014.26.6.352
  7. Korea Hydrographic and Oceanographic Administration (2011). A report on the production and distribution of coastal inundation map. (in Korean)
  8. McInnes, K. L., and Hubbert, G. D. (2003). A numerical modelling study of storm surges in Bass Strait, Aust. Meteorol. Mag., 52, 143-156.
  9. Park, Y.H. and Suh, K.-D. (2012). Variations of storm surge caused by shallow water depths and extreme tidal ranges, Ocean Engineering, 55, 44-51. https://doi.org/10.1016/j.oceaneng.2012.07.032
  10. Prandle, D. and Wolf, J. (1978). The interaction of surge and tide in the North Sea and river Thames, Geophysical Journal of the Royal Astronomical Society, 55, 203-216. https://doi.org/10.1111/j.1365-246X.1978.tb04758.x
  11. Pugh, D. T. (1987). Tides, surges and mean sea-level: A Handbook For Engineers And Scientists, John Wiley, Hoboken, N. J., 199.
  12. Pugh, D. T. (2004). Changing sea levels, Cambridge Univ. Press.
  13. Quinn, N., Atkinson, P.M. and Wells, N.C. (2012). Modelling of tide and surge elevations in the Solent and surrounding waters: The importance of tide-surge interactions, Estuarine, Coastal and Shelf Science, 112, 162-172. https://doi.org/10.1016/j.ecss.2012.07.011
  14. Rossiter, J. R. (1961). Interaction between tide and surge in the Thames, Geophys. J. R. Astron. Soc., 6, 29-53. https://doi.org/10.1111/j.1365-246X.1961.tb02960.x
  15. Seo, S.N. and Kim, S.I. (2014). Storm surges in West Coast of Korea by typhoon Bolaven(1215), Journal of Korean Society of Coastal and Ocean Eng., 26(1), 41-48. (in Korean) https://doi.org/10.9765/KSCOE.2014.26.1.41
  16. Zhang, W.Z., Shi, F., Hong, H.-S., Shang, S.-P. and Kirby, J.T. (2010). Tide-surge interaction intensified by the Taiwan Strait, J. of Geophysical Research, 115, 1-17.

Cited by

  1. Storm Surge Vulnerability Assessment due to Typhoon Attack on Coastal area in Korea vol.21, pp.5, 2015, https://doi.org/10.7837/kosomes.2015.21.5.608
  2. Generation of a Standard Typhoon using for Surge Simulation Consistent with Wind in Terms of Return Period vol.28, pp.1, 2016, https://doi.org/10.9765/KSCOE.2016.28.1.53
  3. Frequency Analysis on Surge Height by Numerical Simulation of a Standard Typhoon vol.28, pp.5, 2016, https://doi.org/10.9765/KSCOE.2016.28.5.284