• 제목/요약/키워드: typhoon wind speed

검색결과 140건 처리시간 0.023초

도로표지판 지지구조물의 내풍성능 향상에 관한 연구 (A study on improvement of wind-resistance characteristics of the structure supporting road sign)

  • 손용춘;박수영;임종국;신민철
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.485-488
    • /
    • 2008
  • The structure supporting road sign is a road information facility for ensuring the safe transportation and smooth traffic. But, lots of road information facilities were damaged by the typhoon "Maemi" in 2003. Such damaged facilities should be rehabilitated and could increase economic loss by causing traffic accident. Therefore, in this study, behavior that reduce wind load and improve wind resistance of the structure supporting road sign are studied about wind load beyond design specification by abnormal climate as below. The first is wind load reducing technique such that shear key resist wind load that is not greater than design wind speed but in case that it is over the design wind limit, column member is rotated on the inner steel pipe axis by the brittle failure of shear key. The second is the technique such that fail-safe the overturning of road sign panel by equipment installation in the vertical member. The third is the technique of installing stiffening plate inside the vertical member to relieve stress concentration.

  • PDF

345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책 (345kV Overhead Transmission Line Collapse Analysis and Countermeasures)

  • 박재웅;신태우;최진성;최한열;민병욱
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.531-535
    • /
    • 2010
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance of transmission towers against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

승용차 충돌을 고려한 가로등주 설계 (Design of a column for streetlamp considering the car crash)

  • 임재문;이광원
    • 자동차안전학회지
    • /
    • 제5권2호
    • /
    • pp.57-61
    • /
    • 2013
  • A column for streetlamp has been damaged by severe wind loads such as typhoon. The stress concentration around the inspection hole may cause the collapse of the column for streetlamp. In this paper, the effects due to the wind load of 60 m/s and the car crash to the column at the speed of 48 km/h were considered to examine the design stability analysis of the column for streetlamp. The maximum von Mises stress did not exceed the yield stress of the material. Considering the car crash, the column for streetlamp was not collapsed.

동해연안역 해수면변동에 미치는 태풍의 영향 -I. 일본 북부연안에서의 해수면변동- (The Response of Sea Levels to Typhoons in the Japan Sea -Part I. The Response on the North Japanese Coast-)

  • 홍철훈;윤종환
    • 한국수산과학회지
    • /
    • 제26권6호
    • /
    • pp.567-579
    • /
    • 1993
  • 태풍통과시 동해의 일본북구연안에서의 수위변동을 조사하기 위해 $1966{\sim}1986$년간의 시간별수위자료분석 및 고분해능($5'{\times}5'$)을 갖는 천해파모델상에서의 수치실험을 행하였다. 자료분석의 주결과는 1) 태풍통과시 Simonoseki(SS)와 Maizuru(MZ) 간에 약 4m/s의 위상속도를 갖는 진행파가 존재하나, 2) Sasebo(SB)와 Hakata(HK) 간에는 파속이 매우 느리고(약 1.7 m/s), 3) HK에서는 SS에 비해 약 반나절 늦게 최대수위에 도달하는 점등이었다. 실험결과는 관측결과와 좋은 대응을 보였다. 실험결과로 볼 때, 연안에 전파하는 진행파는 관측결과와 거의 같은 위상속도 약 4 m/s를 갖는 지형성파로서 확인된다. 태풍이 대한해협을 통과하기전에는 일본연안에 평행한 바람에 의해 생성된 남서방향의 연안젯트류에 의해 파의 전파가 영향을 받고, 태풍이 통과한 후에는 연안젯트류가 약해지면서 파가 전파하게 된다.

  • PDF

지역예측모델 영역 크기에 따른 집중호우 수치모의 민감도 실험 (A Study on Sensitivity of Heavy Precipitation to Domain Size with a Regional Numerical Weather Prediction Model)

  • 민재식;노준우;지준범;김상일
    • 대기
    • /
    • 제26권1호
    • /
    • pp.85-95
    • /
    • 2016
  • In this study, we investigated the variabilities of wind speed of 850 hPa and precipitable water over the East Asia region using the NCEP Final Analysis data from December 2001 to November 2011. A large variance of wind speed was observed in northern and eastern China during the winter period. During summer, the regions of the East China Sea, the South Sea of Japan and the East Sea show large variances in the wind speed caused by an extended North Pacific High and typhoon activities. The large variances in the wind speed in the regions are shown to be correlated with the inter-annual variability of precipitable water over the inland region of windward side of the Korean Peninsula. Based on the investigation, sensitivity tests to the domain size were performed using the WRF model version 3.6 for heavy precipitation events over the Korean Peninsula for 26 and 27 July 2011. Numerical experiments of different domain sizes were set up with 5 km horizontal and 50 levels vertical resolutions for the control and the first experimental run, and 9 km horizontal for the second experimental run. We found that the major rainfalls correspond to shortwave troughs with baroclinic structure over Northeast China and extended North Pacific High. The correlation analysis between the observation and experiments for 1-h precipitation indicated that the second experiment with the largest domain had the best performance with the correlation coefficient of 0.79 due to the synoptic-scale systems such as short-wave troughs and North Pacific High.

Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses

  • Ni, Y.Q.;Wang, Y.W.;Xia, Y.X.
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.447-468
    • /
    • 2015
  • Modal identification of civil engineering structures based on ambient vibration measurement has been widely investigated in the past decades, and a variety of output-only operational modal identification methods have been proposed. However, vibration modes, even fundamental low-order modes, are not always identifiable for large-scale structures under ambient vibration excitation. The identifiability of vibration modes, deficiency in modal identification, and criteria to evaluate robustness of the identified modes when applying output-only modal identification techniques to ambient vibration responses were scarcely studied. In this study, the mode identifiability of the cable-stayed Ting Kau Bridge using ambient vibration measurements and the influence of the excitation intensity on the deficiency and robustness in modal identification are investigated with long-term monitoring data of acceleration responses acquired from the bridge under different excitation conditions. It is observed that a few low-order modes, including the second global mode, are not identifiable by common output-only modal identification algorithms under normal ambient excitations due to traffic and monsoon. The deficient modes can be activated and identified only when the excitation intensity attains a certain level (e.g., during strong typhoons). The reason why a few low-order modes fail to be reliably identified under weak ambient vibration excitations and the relation between the mode identifiability and the excitation intensity are addressed through comparing the frequency-domain responses under normal ambient vibration excitations and under typhoon excitations and analyzing the wind speeds corresponding to different response data samples used in modal identification. The threshold value of wind speed (generalized excitation intensity) that makes the deficient modes identifiable is determined.

현업 국지모델기반 2018년 여름철 기상 1호 특별 고층관측자료의 관측 민감도 실험 (Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018)

  • 최다영;황윤정;이용희
    • 대기
    • /
    • 제30권1호
    • /
    • pp.17-30
    • /
    • 2020
  • KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.

Air Leakage Analysis of Research Reactor HANARO Building in Typhoon Condition for the Nuclear Emergency Preparedness

  • Lee, Goanyup;Lee, Haecho;Kim, Bongseok;Kim, Jongsoo;Choi, Pyungkyu
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.354-358
    • /
    • 2016
  • Background: To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition Materials and Methods: MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. Results and Discussion: It was found that the leak rate is $0.1%{\cdot}day^{-1}$ of air, $0.004%{\cdot}day^{-1}$ of noble gas and $3.7{\times}10^{-5}%{\cdot}day^{-1}$ of aerosol during typhoon passing. The air leak rate of $0.1%{\cdot}day^{-1}$ can be converted into $1.36m^3{\cdot}hr^{-1}$, but the design leak rate in HANARO safety analysis report was considered as $600m^3{\cdot}hr^{-1}$ under the condition of $20m{\cdot}sec^{-1}$ wind speed outside of the building by typhoon. Conclusion: Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor.

시계열 풍속벡터의 유사성을 이용한 포항지역 바람권역 분류 (Classification of Wind Sector in Pohang Region Using Similarity of Time-Series Wind Vectors)

  • 김현구;김진솔;강용혁;박형동
    • 한국태양에너지학회 논문집
    • /
    • 제36권1호
    • /
    • pp.11-18
    • /
    • 2016
  • The local wind systems in the Pohang region were categorized into wind sectors. Still, thorough knowledge of wind resource assessment, wind environment analysis, and atmospheric environmental impact assessment was required since the region has outstanding wind resources, it is located on the path of typhoon, and it has large-scale atmospheric pollution sources. To overcome the resolution limitation of meteorological dataset and problems of categorization criteria of the preceding studies, the high-resolution wind resource map of the Korea Institute of Energy Research was used as time-series meteorological data; the 2-step method of determining the clustering coefficient through hierarchical clustering analysis and subsequently categorizing the wind sectors through non-hierarchical K-means clustering analysis was adopted. The similarity of normalized time-series wind vector was proposed as the Euclidean distance. The meteor-statistical characteristics of the mean vector wind distribution and meteorological variables of each wind sector were compared. The comparison confirmed significant differences among wind sectors according to the terrain elevation, mean wind speed, Weibull shape parameter, etc.

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.