Browse > Article
http://dx.doi.org/10.14191/Atmos.2020.30.1.017

Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018  

Choi, Dayoung (Numerical Modeling Center, Korea Meteorological Administration)
Hwang, Yoonjeong (Numerical Modeling Center, Korea Meteorological Administration)
Lee, Yong Hee (Numerical Modeling Center, Korea Meteorological Administration)
Publication Information
Atmosphere / v.30, no.1, 2020 , pp. 17-30 More about this Journal
Abstract
KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.
Keywords
Upper-air observation; OSE; NWP; data assimilation; severe weather;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
2 Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941-3961.   DOI
3 Choi, H.-W., S.-H. Won, K.-H. Kim, Y.-H. Kim, and C.-H. Cho, 2014: A study on observing system experiment using special upper-air observations in summer 2014. Proc. of the Autumn Meeting of KMS, Jeju, Korea, Korean Meteorological Society, 122-123 (in Korean).
4 Choi, H.-W., Y.-J. Hwang, K.-H. Kim, K.-M. Cho, and S.-W. Joo, 2015: A study on sensitivity experiment using upper-air observations in summer case in 2015. Proc. of the Autumn Meeting of KMS, Seoul, Korea, Korean Meteorological Society, 286-287 (in Korean).
5 Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. Roy. Meteor. Soc., 122, 689-719.   DOI
6 Ha, K.-J., S.-K. Park, and K.-Y. Kim, 2003: Interannual variability in summer precipitation around the Korean peninsula and its associated east Asian summer circulation. Kor. J. Atmos. Sci., 39, 575-586 (in Korean with English abstract).
7 Kim, Y.-H., E.-H. Jeon, D.-E. Chang, H.-S. Lee, and J.-I. Park, 2010: The impact of T-PARC 2008 dropsonde observations on typhoon track forecasting. Asia-Pac. J. Atmos. Sci., 46, 287-303, doi:10.1007/s13143-010-1011-2.   DOI
8 Hwang, Y.-J., J.-C. Ha, Y.-H. Kim, K.-H. Kim, E.-H. Jeon, and D.-E. Chang, 2011: Observing system experiments using KLAPS and 3DVAR for the upper-air observations over the south and west sea during ProbeX-2009. Atmosphere, 21, 1-16 (in Korean with English abstract).   DOI
9 Islam, T., P. K. Srivastava, M. A. Rico-Ramirez, Q. Dai, M. Gupta, and S. K. Singh, 2015: Tracking a tropical cyclone through WRF-ARW simulation and sensitivity of model physics. Nat. Hazards, 76, 1473-1495, doi:10.1007/s11069-014-1494-8.   DOI
10 Jeon, E.-H., Y.-H. Kim, D.-E. Chang, H.-S. Lee, and S.-W. Lee, 2009: The impact of T-PARC 2008 dropsonde observations on typhoon track forecasting of typhoon Silako (0813) and Rose (0815). Proc. of the Autumn Meeting of KMS, Daegu, Korea, Korean Meteorological Society, 12-13 (in Korean).
11 Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone wind-pressure relationships. Wea. Forecasting, 22, 71-88.   DOI
12 Short, C. J., and J. Petch, 2018: How well can the met office unified model forecast tropical cyclones in the western north pacific? Wea. Forecasting, 33, 185-200, doi:10.1175/WAF-D-17-0069.1.   DOI
13 Lee, J.-S., J.-K. Shim, J.-C. Ha, and K.-Y. Chung, 2013: A study on sensitivity analysis of regional model using upper-air observations: precipitation cases on July 2013. Proc. of the Autumn Meeting of KMS, Gwangju, Korea, Korean Meteorological Society, 438-439 (in Korean).
14 Lee, Y.-H., H.-Y. Lee, K.-H. Lee, J.-S. Lee, J.-Y. Jang, and S.-W. Ju, 2016: The improvement of prediction skill for precipitation based on the convective scale model in the summer 2016. Proc. of the Autumn Meeting of KMS, Busan, Korea, Korean Meteorological Society, 297-298 (in Korean).
15 Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 4819-4838.
16 Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199.   DOI
17 Lorenc, A. C., and F. Rawlins, 2005: Why does 4D-Var beat 3D-Var? Q. J. Roy. Meteor. Soc., 131, 3247-3257.   DOI
18 Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Q. J. Roy. Meteor. Soc., 136, 1671-1685, doi:10.1002/qj.687.   DOI
19 Staniforth, A., and N. Wood, 2008: Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J. Comput. Phys., 227, 3445-3464.   DOI
20 Tao, W.-K., J. J. Shi, S. S. Chen, S. Lang, P.-L. Lin, S.-Y. Hong, C. Peters-Lidard, and A. Hou, 2011: The impact of microphysical schemes on hurricane intensity and track. Asia-Pac. J. Atmos. Sci., 47, 1-16, doi:10.1007/s13143-011-1001-z.   DOI
21 Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Q. J. Roy. Meteor. Soc., 129, 1989-2010.   DOI
22 Weston, P., 2014: Assimilating IASI data into the UKV. Met Office SA Tech. Memo., 15, 30 pp.
23 Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. Roy. Meteor. Soc., 125, 1607-1636.   DOI