• Title/Summary/Keyword: two-zone model

Search Result 565, Processing Time 0.023 seconds

The Characteristics and Survival Rates of Evergreen Broad-Leaved Tree Plantations in Korea (난대상록활엽수종 조림지 활착률과 영향인자)

  • Park, Joon-Hyung;Jung, Su-Young;Lee, Kwang-Soo;Lee, Ho-Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.513-521
    • /
    • 2019
  • With rapid climate change and increasing global warming, the distribution of evergreen broad-leaved trees (EBLTs) is gradually expanding to the inland regions of Korea. The aim of the present study was to analyze the survival rate of 148 EBLT plantations measuring 180 ha and to determine the optimal plantation size that would help in coping with climate change in the warm, temperate climate zone of the Korean peninsula. For enhancing the reliability of our estimated survival model, we selected a set of 11 control variables that may have also influenced the survival rates of the EBLTs in the 148 plantations. The results of partial correlation analysis showed that the survival rate of 67.0±26.9 of the EBLTs in the initial plantation year was primarily correlated with plantation type by the crown closure of the upper story of the forest, wind exposure, and precipitation. For predicting the probability of survival by quantification theory, 148 plots were surveyed and analyzed with 11 environmental site factors. Survival rate was in the order of plantation type by the crown closure of upper story of the forest, wind exposure, total cumulative precipitation for two weeks prior to planting, and slope stiffness in the descending order of score range in the estimated survival model for the EBLTs with the fact that survival rate increased with shade rate of upper story to some extent.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics® (콤솔 멀티피직스를 이용한 2차원 탄소성 인장 암석권 모형에서 발생하는 전단열에 관한 수치 모사 연구)

  • Jo, Taehwan;So, Byung-Dal
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the development of geodynamic structures such as subduction and rift zones, a weakening mechanism is essential for localized weak zone formation in the lithosphere. Shear heating, a weakening mechanism, generates short-wavelength temperature elevation in the lithosphere; the increased temperature can reduce lithospheric strength and promote its breakup. A two-dimensional elastoplastic extensional basin model was used to conduct benchmarking based on previous numerical simulation studies to quantitatively analyze shear heating. The amount of shear heating was investigated by controlling the yield strength, extensional velocity, and strain- and temperature-dependent weakening. In the absence of the weakening mechanism, the higher yield strength and extensional velocity led to more vigorous shear heating. The reference model with a 100-MPa yield strength and 2-cm/year extension showed a temperature increase of ~ 50 K when the bulk extension was 20 km (i.e., 0.025 strain). However, in the yield-strength weakening mechanism, depending on the plastic strain and temperature, more efficient weakening induced stronger shear heating, which indicates positive feedback between the weakening mechanism and the shear heating. The rate of shear heating rapidly increased at the initial stage of deformation, and the rate decreased by 80% as the lithosphere weakened. This suggests that shear heating with the weakening mechanism can significantly influence the strength of relatively undamaged lithosphere.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Antidepressant Effects of JG02 on Chronic Restraint Stress Animal Model (만성구속스트레스 동물모델에 대한 JG02의 항우울 효과)

  • You, Dong Keun;Seo, Young Kyung;Lee, Ji-Yoon;Kim, Ju Yeon;Jung, Jin-Hyeong;Choi, Jeong June;Jung, In Chul
    • Journal of Oriental Neuropsychiatry
    • /
    • v.30 no.3
    • /
    • pp.209-220
    • /
    • 2019
  • Objectives: As a general emotion, everyone can temporarily experience depression, but depressive disorder is a disease that excessively affects daily life. Among the various causes of depression, the deficiency of monoamine-based neurotransmitters such as serotonin and epinephrine are considered significant. Thus, antidepressants that target monoamines are used frequently. However, side effects such as nausea, vomiting, insomnia, anxiety, and sexual dysfunction are observed. Thus, it is necessary to develop a new therapeutic agent with fewer side effects. In this study, we investigated the antidepressant effect of JG02, used to treat depression by normalizing the flow of qi (氣) in Korean medicine. Methods: C57BL/6 mice were selected and randomly divided into six groups: normal, control, amitriptyline, and JG02 (50, 125, 250 mg/kg), respectively. Except for normal, depression was induced by applying restraint stress at the same time for six hours daily for 14 consecutive days. Saline, amitriptyline or JG02 samples were orally administered two hours before applying the stress. After that, a forced swimming test and an open field test were performed. Additionally, serum corticosterone, serotonin mRNA, BDNF mRNA, and protein in the hippocampal region were measured and compared. Results: JG02 decreased immobility time rate in the FST and increased the zone transition number and travel distance in the OFT. Also, JG02 inhibited the release of serum corticosterone, and increased serotonin, BDNF gene expression, and BDNF protein in the hippocampus. Conclusions: In this study, JG02 showed significant antidepressant effects on the chronic restraint stress mice model. When further research is performed based on JG02, the development of a new antidepressant is considered highly possible.

A Review on the Stratigraphy, Depositional Period, and Basin Evolution of the Bansong Group (반송층군의 층서, 퇴적시기, 분지 진화에 관한 고찰)

  • Younggi Choi;Seung-Ik Park;Taejin Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.385-396
    • /
    • 2023
  • The Mesozoic Bansong Group, distributed along the NE-SW thrust fault zone of the Okcheon Fold Belt in the Danyang-Yeongwol-Jeongseon areas, contains important information on the two Mosozoic orogenic cycles in the Koran Peninsula, the Permian-Triassic Songrim Orogeny and the Jurassic Daebo Orogeny. This study aims to review previous studies on the stratigraphy, depositional period, and basin evolution of the Bansong Group and to suggest future research directions. The perspective on the implication of the Bansong Group in the context of the tectonic evolution of the Korean Peninsula is largely divided into two points of view. The traditional view assumes that it was deposited as a product of the post-collisional Songrim Orogeny and then subsequently deformed by the Daebo Orogeny. This interpretation is based on the stratigraphic, paleontologic, and structural geologic research carried out in the Danyang Coalfield area. On the other hand, recent research regards the Bansong Group as a product of syn-orogenic sedimentation during the Daebo Orogeny. This alternative view is based on the zircon U-Pb ages of pyroclastic rocks distributed in the Yeongwol area and their structural position. However, both models cannot comprehensively explain the paleontological and geochronological data derived from Bansong Group sediments. This suggests the need for a new basin evolution model integrated from multidisciplinary data obtained through sedimentology, structural geology, geochronology, petrology, and geochemistry studies.

Validation of ENVI-met Model with In Situ Measurements Considering Spatial Characteristics of Land Use Types (토지이용 유형별 공간특성을 고려한 ENVI-met 모델의 현장측정자료 기반의 검증)

  • Song, Bong-Geun;Park, Kyung-Hun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.156-172
    • /
    • 2014
  • This research measures and compares on-site net radiation energy, air temperature, wind speed, and surface temperature considering various spatial characteristics with a focus on land use types in urban areas in Changwon, Southern Gyeongsangnam-do, to analyze the accuracy of an ENVI-met model, which is an analysis program of microclimate. The on-site measurement was performed for three days in a mobile measurement: two days during the daytime and one day during the nighttime. The analysis using the ENVI-met model was also performed in the same time zone as the on-site measurement. The results indicated that the ENVI-met model showed higher net radiation than the on-site measurement by approximately $300Wm^{-2}$ during the daytime whereas the latter showed higher net radiation energy by approximately $200Wm^{-2}$ during the nighttime. The temperature was found to be much higher by approximately $2-6^{\circ}C$ in the on-site measurement during both the daytime and nighttime. The on-site measurement also showed higher surface temperature than the ENVI-met by approximately $7-13^{\circ}C$. In terms of the wind speed, there was a significant difference between the results of the ENVI-met model and on-site measurement. As for the correlation between the results of the ENVI-met model and on-site measurement, the temperature showed significantly high correlation whereas the correlations for the net radiation energy, surface temperature, and wind speed were very low. These results appear to be affected by excessive or under estimation of solar and terrestrial radiation and climatic conditions of the surrounding areas and characteristics of land cover. Hence, these factors should be considered when applying these findings in urban and environment planning for improving the microclimate in urban areas.

A Hydrodynamic Modeling Study to Analyze the Water Plume and Mixing Pattern of the Lake Euiam (의암호 수체 흐름과 혼합 패턴에 관한 모델 연구)

  • Park, Seongwon;Lee, Hye Won;Lee, Yong Seok;Park, Seok Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.488-498
    • /
    • 2013
  • A three-dimensional hydrodynamic model was applied to the Lake Euiam. The lake has three inflows, of which Gongji Stream has the smallest flow rate and poorest water. The dam-storage volume, watershed area, lake shape and discharge type of the Chuncheon Dam and the Soyang Dam are different. Therefore, it is difficult to analyze the water plume and mixing pattern due to the difference of the two dams regarding the amount of outflow and water temperature. In this study, we analyzed the effects of different characteristics on temperature and conductivity using the model appropriate for the Lake Euiam. We selected an integrated system supporting 3-D time varying modeling (GEMSS) to represent large temporal and spatial variations in hydrodynamics and transport of the Lake Euiam. The model represents the water temperature and hydrodynamics in the lake reasonably well. We examined residence time and spreading patterns of the incoming flows in the lake based on the results of the validated model. The results of the water temperature and conductivity distribution indicated that characteristics of upstream dams greatly influence Lake Euiam. In this study, the three-dimensional time variable water quality model successfully simulated the temporal and spatial variations of the hydrodynamics in the Lake Euiam. The model may be used for efficient water quality management.

Interannual and Seasonal Variations of Water Quality in Terms of Size Dimension on Multi-Purpose Korean Dam Reservoirs Along with the Characteristics of Longitudinal Gradients (우리나라 다목적댐 인공호들의 규모에 따른 연별.계절별 수질변이 및 상.하류간 종적구배 특성)

  • Han, Jeong-Ho;Lee, Ji-Yeoun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.319-337
    • /
    • 2010
  • Major objective of this study was to determine interannual and seasonal water quality along with characteristics of longitudinal gradients along the reservoir axis of the riverine zone (Rz)-to-lacustrine zone (Lz). Water quality dataset of five years during 2003~2007 used here were obtained from Ministry of Environment, Korea and ten physical, chemical and biological parameters were analyzed in the study. Similarity analysis, based on moropho-hydrological variables of reservoir surface area, watershed area, total inflow, and outflow, showed that the reservoirs were categorized as three groups of large-dam reservoirs (Chungju Reservoir, Daecheong Reservoir and Soyang Reservoir), mid-size reservoirs (Andong Reservoir, Yongdam Reservoir, Juam Reservoir and Hapcheon Reservoir), and small-size reservoirs (Hoengseong Reservoir and Buan Reservoir). According to the data comparison of high-flow year (2003) vs. lowflow year (2005), dissolved oxygen (DO), pH, biological oxygen demand (BOD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), chlorophyll-a (CHL) and electrical conductivity (EC) declined along the longitudinal axis of Rz to Lz and water transparency, based on Secchi depth (SD), increased along the axis. These results indicate that transparency was a function of Values of pH, DO, SS, SD, and EC at each site were greater in the low-flow year (2005) than the high-flow year (2003), whereas values of BOD, COD, TN, TP and CHL were greater in the high-flow year (2003). When values of TN, TP, CHL and SD in nine reservoirs were compared in the three zones of Rz, Tz, and Lz, values of TN, TP and CHL declined along longitudinal gradients and SD showed the opposite due to the sedimentation processes from the water column. Values of TN were not statistically correlated with TP values. The empirical linear models of TP-CHL and CHL-SD showed significant (p<0.05, $R^2$>0.04). In the mid-size reservoirs, the variation of CHL was explained ($R^2$=0.2401, p<0.0001, n=239) by the variation of TP. The affinities in the correlation analysis of mid-size reservoirs were greater in the CHL-SD model than any other empirical models, and the CHL-SD model had an inverse relations. In the meantime, water quality variations was evidently greater in Daecheong Reservoir than two reservoirs of Andong Reservoir and Hoengseong Reservoir as a result of large differences of water quality by long distance among Rz, Tz and Lz.

Preliminary Study on the Application of Remote Sensing to Mineral Exploration Using Landsat and ASTER Data (Landsat과 ASTER 위성영상 자료를 이용한 광물자원탐사로의 적용 가능성을 위한 예비연구)

  • Lee, Hong-Jin;Park, Maeng-Eon;Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.467-475
    • /
    • 2010
  • The Landsat and ASTER data have been used in mineralogical and lithological studies, and they have also proved to be useful tool in the initial steps for mineral exploration throughout Nevada mining district, US. Huge pyrophyllite quarry mines, including Jungang, Samsung, Kyeongju, and Naenam located in the southeastern part of Gyeongsang Basin. The geology of study area consists mainly of Cretaceous volcanic rocks, which belong into Cretaceous Hayang and Jindong Group. They were intruded by Bulgugsa granites, so called Sannae-Eonyang granites. To extraction of Ratio model for pyrophyllite deposits, tuffaceous rock and pyrophyllite ores from the Jungang mine used in reflectance spectral analysis and these results were re-sampled to Landsat and ASTER bandpass. As a result of these processes, the pyrophyllite ores spectral features show strong reflectance at band 5, whereas strong absorption at band 7 in Landsat data. In the ASTER data, the pyrophyllite ores spectral features show strong absorption at band 5 and 8, whereas strong reflectance at band 4 and 7. Based on these spectral features, as a result of application of $Py_{Landsat}$ model to hydrothermal alteration zone and other exposed sites, the DN values of two different areas are 1.94 and 1.19 to 1.49, respectively. The differences values between pyrophyllite deposits and concrete-barren area are 0.472 and 0.399 for $Py_{ASTER}$ model, 0.452 and 0.371 for OHIb model, 0.365 and 0.311 for PAK model, respectively. Thus, $Py_{ASTER}$ and $Py_{Landsat}$ model proposed from this study proved to be more useful tool for the extraction of pyrophyllite deposits relative to previous models.