• Title/Summary/Keyword: two-way relaying

Search Result 51, Processing Time 0.024 seconds

SER-Based Relay Selection for Two-Way Relaying with Physical Layer Network Coding

  • Li, Dandan;Xiong, Ke;Qiu, Zhengding;Du, Guanyao
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.336-339
    • /
    • 2013
  • To enhance the symbol error rate (SER) performance of the two-way relay channels with physical layer network coding, this letter proposes a relay selection scheme, in which the relay with the maximal minimum distance between different points in its constellation among all relays is selected to assist two-way transmissions. We give the closed-form expression of minimum distance for binary phase-shift keying and quadrature phase-shift keying. Additionally, we design a low-complexity method for higher-order modulations based on look-up tables. Simulation results show that the proposed scheme improves the SER performance for two-way relay networks.

Improving Physical-Layer Security for Full-duplex Radio aided Two-Way Relay Networks

  • Zhai, Shenghua;An, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.562-576
    • /
    • 2020
  • The power allocation optimization problem is investigated for improving the physical-layer security in two-way relaying networks, where a full-duplex relay based half-jamming protocol (HJP-FDR) is considered. Specially, by introducing a power splitter factor, HJP-FDR divides the relay's power into two parts: one for forwarding the sources' signals, the other for jamming. An optimization problem for power split factor is first developed, which is proved to be concave and closed-form solution is achieved. Moreover, we formulate a power allocation problem to determine the sources' power subject to the total power constraint. Applying the achieved closed-form solutions to the above-mentioned problems, a two-stage strategy is proposed to implement the overall power allocation. Simulation results highlight the effectiveness of our proposed algorithm and indicate the necessity of optimal power allocation.

Rate-Aware Two-Way Relaying for Low-Cost Ship-to-Ship Communications (저비용 선박간 통신을 위한 전송률 인지 양방향 릴레이 기법)

  • Wang, Jinsoo;Kim, Sun Yong;Jeong, Min-A;Lee, Seong Ro;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.651-659
    • /
    • 2014
  • In this paper, we consider a two way relay network for ship-to-ship communications in a fleet, where two communicating ships exchange the information with the help of a multi-antenna relay ship. For the network, we propose a rate-aware three-phase analog network coding to improve the reliability of the information exchange with asymmetric rates. The proposed scheme allows low-complex implementation of the relay without channel estimation by generating an improved analog network coded signal with the orthogonally received signals from two ships by using only the received signal power at each antenna. In addition, the proposed scheme reduces outages in the data exchange at asymmetric rates by adopting a rate-aware relay power allocation, which is confirmed by evaluating the outage performance via simulation.

Denoising Mapping Utilizing Constellation Symmetry in Denoise-and-Forward Two-Way Relay Channels

  • Zheng, Jianping;Bai, Baoming;Li, Ying
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.617-620
    • /
    • 2012
  • The denoising mapping with the closest-neighbor clustering (CNC) method in denoise-and-forward two-way relay channels is studied. Specifically, the symmetry of the constellations in source terminals A and B is utilized to reduce the complexity of the CNC method. The specific case considered first to illustrate how the constellation symmetry works in the CNC method is the quadrature phase-shift keying constellation in A and B and the single-antenna deployment in all terminals. This case study shows that an enormous complexity reduction can be achieved. Next, the result is extended to multiple-antenna scenarios and square quadrature amplitude modulations.

Optimal Power Splitting for Wireless Energy and Information Transfer in Amplify-and-Forward Two-Way Relaying (증폭-후-전달 양방향 릴레이에서 무선 에너지 정보 전송을 위한 최적 전력 분할)

  • Do, Thinh Phu;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.175-177
    • /
    • 2016
  • This letter considers wireless energy and information transfer for an amplify-and-forward two-way relay network. When the relay harvests the energy and transfers the information signal through power splitting, the optimal power splitting minimizing the outage probability is derived explicitly and its gain is confirmed by simulations.

Outage Analysis and Optimization for Four-Phase Two-Way Transmission with Energy Harvesting Relay

  • Du, Guanyao;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3321-3341
    • /
    • 2014
  • This paper investigates the outage performance and optimization for the four-phase two-way transmission network with an energy harvesting (EH) relay. To enable the simultaneous information processing and energy harvesting at the relay, we firstly propose a power splitting-based two-way relaying protocol (PSTWR). Then, we discuss its outage performance theoretically and derive an explicit expression for the system outage probability. In order to find the optimal system configuration parameters such as the optimal power splitting ratio and the optimal transmit power redistribution factor, we formulate an outage-minimized optimization problem. As the problem is difficult to solve, we design a genetic algorithm (GA) based algorithm for it. Besides, we also investigate the effects of the power splitting ratio, the power redistribution factor at the relay, and the source to relay distance on the system outage performance. Finally, extensive simulation results are provided to demonstrate the accuracy of the analytical results and the effectiveness of the GA-based algorithm. Moreover, it is also shown that, the relay position greatly affects the system performance, where relatively worse outage performance is achieved when the EH relay is placed in the middle of the two sources.

Two-Way MIMO AF Relaying Methods Having a Legacy Device without Self-Interference Cancellation (자기간섭 제거 기능이 없는 기존 단말을 가지는 양방향 다중입출력 중계 증폭 전송 기법)

  • Lee, Kyoung-Jae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.338-344
    • /
    • 2017
  • In this paper, two-way amplify-and-forward relay methods are investigated where two terminals and one relay node are equipped with multiple antennas. In two-way relay channels, it is assumed that one terminal can eliminate its own self-interference but the other cannot. For this channel, we first maximize the sum-rate performance by employing an iterative gradient descent (GD) algorithm. Then, a simple singular value decomposition (SVD) based block triangularization is developed to null the self-interference. Simulation results show the proposed methods outperform the conventional schemes for various environments.

Bi-Directional Half-Duplex Relaying Protocols

  • Kim, Sang-Joon;Devroye, Natasha;Tarokh, Vahid
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.433-444
    • /
    • 2009
  • The bi-directional relay channel is the natural extension of a three-terminal relay channel where node a transmits to node b with the help of a relay r to allow for two-way communication between nodes a and b. That is, in a bi-directional relay channel, a and b wish to exchange independent messages over a shared channel with the help of a relay r. The rates at which this communication may reliably take place depend on the assumptions made on the relay processing abilities. We overview information theoretic limits of the bi-directional relay channel under a variety of conditions, before focusing on half-duplex nodes in which communication takes place in a number of temporal phases (resulting in protocols), and nodes may forward messages in four manners. The relay-forwarding considered are: Amplify and forward (AF), decode and forward (DF), compress and forward (CF), and mixed forward. The last scheme is a combination of CF in one direction and DF in the other. We derive inner and outer bounds to the capacity region of the bi-directional relay channel for three temporal protocols under these four relaying schemes. The first protocol is a two phase protocol where a and b simultaneously transmit during the first phase and the relay r alone transmits during the second. The second protocol considers sequential transmissions from a and b followed by a transmission from the relay while the third protocol is a hybrid of the first two protocols and has four phases. We provide a comprehensive treatment of protocols in Gaussian noise, obtaining their respective achievable rate regions, outer bounds, and their relative performance under different SNR and relay geometries.

Modulation Scheme for Network-coded Bi-directional Relaying over an Asymmetric Channel (양방향 비대칭 채널에서 네트워크 부호화를 위한 변조 방식)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.97-109
    • /
    • 2012
  • In this paper, we propose a modulation scheme for a network-coded bi-directional relaying (NBR) system over an asymmetric channel, which means that the qualities of the relay channel (the link between the BS and RS) and access channel (the link between the RS and MS) are not identical. The proposed scheme employs a dual constellation in such a way that the RS broadcasts the network-coded symbols modulated by two different constellations to the MS and BS over two consecutive transmission intervals. We derive an upper bound on the average bit error rate (BER) of the proposed scheme, and compare it with the hybrid constellation-based modulation scheme proposed for the asymmetric bi-directional link. Furthermore, we investigate the channel utilization of the existing bi-directional relaying schemes as well as the NBR system with the proposed dual constellation diversity-based modulation (DCD). From our simulation results, we show that the DCD gives better average BER performance about 3.5~4dB when $E_b/N_0$ is equal to $10^{-2}$, while maintaining the same spectral efficiency as the existing NBR schemes over the asymmetric bi-directional relaying channel.

Impact of Power Control Optimization on the System Performance of Relay Based LTE-Advanced Heterogeneous Networks

  • Bulakci, Omer;Redana, Simone;Raaf, Bernhard;Hamalainen, Jyri
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.345-359
    • /
    • 2011
  • Decode-and-forward relaying is a promising enhancement to existing radio access networks and is already standardized in 3rd generation partnership project (3GPP) as a part of long term evolution (LTE)-Advanced Release 10. Two inband operation modes of relay nodes are supported, namely type 1 and type lb. Relay nodes promise to offer considerable gain for system capacity or coverage, depending on the deployment prioritization, in a cost-efficient way. Yet, in order to fully exploit the benefits of relaying, the inter-cell interference which is increased due to the presence of relay nodes should be limited. Moreover, large differences in the received power levels from different users should be avoided. The goal is to keep the receiver dynamic range low in order to retain the orthogonality of the single carrier-frequency division multiple access system. In this paper, an evaluation of the relay based heterogeneous deployment within the LTE-Advanced uplink framework is carried out by applying the standardized LTE Release 8 power control scheme both at evolved node B and relay nodes. In order to enhance the overall system performance, different power control optimization strategies are proposed for 3GPP urban and suburban scenarios. A comparison between type 1 and type 1b relay nodes is as well presented to study the effect of the relaying overhead on the system performance in inband relay deployments. Comprehensive system level simulations show that the power control is a crucial means to increase the cell edge and system capacities, to mitigate inter-cell interference and to adjust the receiver dynamic range for both relay node types.