• Title/Summary/Keyword: two-parameter foundation

Search Result 151, Processing Time 0.02 seconds

Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates

  • Khadir, Adnan I.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.621-640
    • /
    • 2021
  • Effect of thickness stretching on mechanical behavior of functionally graded (FG) carbon nanotubes reinforced composite (CNTRC) laminated nanoplates resting on elastic foundation is analyzed in this paper using a novel quasi 3D higher-order shear deformation theory. The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Single-walled carbon nanotubes (SWCNTs) are the reinforced elements and are distributed with four power-law functions which are, uniform distribution, V-distribution, O-distribution and X-distribution. To cover various boundary conditions, an analytical solution is developed based on Galerkin method to solve the governing equilibrium equations by considering the nonlocal strain gradient theory. A modified two-dimensional variable Winkler elastic foundation is proposed in this study for the first time. A parametric study is executed to determine the influence of the reinforcement patterns, power-law index, nonlocal parameter, length scale parameter, thickness and aspect ratios, elastic foundation, thermal environments, and various boundary conditions on stresses, displacements, buckling loads and frequencies of the CNTRC laminated nanoplate.

Vibration and Stability of Tapered Timoshenko Beams on Two-Parameter Elastic Foundations (두 파라미터 탄성기초를 갖는 테이퍼진 티모센코 보의 진동 및 안정성)

  • 류봉조;임경빈;윤충섭;류두현
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1075-1082
    • /
    • 2000
  • The paper describes the vibration and stability of tapered beams on two-parameter elastic foundations. The two-parameter elastic foundations are constructed by distributed Winkler springs and a shearing layer as of ten used in soil models. The shear deformation and the rotatory inertia of a beam are taken into account. Governing equations are derived from energy expressions using Hamilton\`s principle. The associated eigenvalue problems are solved to obtain the free vibration frequencies or the buckling loads. Numerical results for the vibration of a beam with an axial force are presented and compared when other solutions are available. Vibration frequencies, mode shapes, and critical forces of a tapered Timoshenko beam on elastic foundations under an axial force are investigated for various thickness ratios, shear foundation parameters, Winkler foundation parameters and boundary conditions.

  • PDF

A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation

  • Benahmed, Abdelkarim;Houari, Mohammed Sid Ahmed;Benyoucef, Samir;Belakhdar, Khalil;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.9-34
    • /
    • 2017
  • In this work, an efficient and simple quasi-3D hyperbolic shear deformation theory is developed for bending and vibration analyses of functionally graded (FG) plates resting on two-parameter elastic foundation. The significant feature of this theory is that, in addition to including the thickness stretching effect, it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The foundation is described by the Pasternak (two-parameter) model. The material properties of the plate are assumed to vary continuously in the thickness direction by a simple power law distribution in terms of the volume fractions of the constituents. Equations of motion for thick FG plates are obtained within the Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The numerical results are given in detail and compared with the existing works such as 3-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates resting on elastic foundation.

An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.573-588
    • /
    • 2009
  • In this paper a four-node hybrid stress element is proposed for analysing arbitrarily shaped plates on a two parameter elastic foundation. The element is developed by combining a hybrid plate stress element and a soil element. The formulation is based on Hellinger-Reissner variational principle in which both inter element compatible boundary displacement and equilibrated stress fields for the plate as well as the foundation are chosen separately. This formulation also allows a low order polynomial interpolation functions. Numerical examples are presented to show that the validity and efficiency of the present element for the plate analysis resting on an elastic foundation. In these examples the effect of soil depth, interaction between closed plates on soil parameters, comparison with Winkler hypothesis is investigated.

Ground motion intensity measure to evaluate seismic performance of rocking foundation system

  • Ko, Kil-Wan;Ha, Jeong-Gon
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.563-576
    • /
    • 2021
  • The rocking foundation is effective for reducing structural seismic demand and avoiding overdesign of the foundation. It is crucial to evaluate the performance of rocking foundations because they cause plastic hinging in the soil. In this study, to derive optimized ground motion intensity measures (IMs) for rocking foundations, the efficiency of IMs correlated with engineering demand parameters (EDPs) was estimated through the coefficient determination using a physical modeling database for rocking shallow foundations. Foundation deformations, the structural horizontal drift ratio, and contribution in drift from foundation rotation and sliding were selected as crucial EDPs for the evaluation of rocking foundation systems. Among 15 different IMs, the peak ground velocity exhibited the most efficient parameters correlated with the EDPs, and it was discovered to be an efficient ground motion IM for predicting the seismic performance of rocking foundations. For vector regression, which uses two IMs to present the EDPs, the IMs indicating time features improved the efficiency of the regression curves, but the correlation was poor when these are used independently. Moreover, the ratio of the column-hinging base shear coefficient to the rocking base shear coefficient showed obvious trends for the accurate assessment of the seismic performance of rocking foundation-structure systems.

Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation

  • Civalek, Omer;Ozturk, Baki
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • The current study presents a mathematical model and numerical method for free vibration of tapered piles embedded in two-parameter elastic foundations. The method of Discrete Singular Convolution (DSC) is used for numerical simulation. Bernoulli-Euler beam theory is considered. Various numerical applications demonstrate the validity and applicability of the proposed method for free vibration analysis. The results prove that the proposed method is quite easy to implement, accurate and highly efficient for free vibration analysis of tapered beam-columns embedded in Winkler- Pasternak elastic foundations.

Vibration Analysis for Beams on Variable Two-Parameter Elastic Foundations Using Differetial Transformation (Differential Transformation에 의한 가변 2 파라미터 탄성기초에 설치된 보의 진동해석)

  • 신영재;김재호;황정기
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.357-363
    • /
    • 2001
  • This paper presents the application of the technique Q( differential transformation to the vibration analysis of beams resting on variable two-parameter elastic foundations. The closed form series solutions for beams are obtained for various boundary conditions. Numerical calculations are carried out and compared with previously published results. The results obtained by the present method agree very well with those reported in the previous works. The present analysis shows the usefulness and validity of differential transformation in solving nonlinear problem of the free vibration.

  • PDF

Wave propagation in a generalized thermo elastic plate embedded in elastic medium

  • Ponnusamy, P.;Selvamani, R.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.13-26
    • /
    • 2012
  • In this paper, the wave propagation in a generalized thermo elastic plate embedded in an elastic medium (Winkler model) is studied based on the Lord-Schulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and foundation are obtained by the traction free boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the foundation parameter. A comparison of the results for the case with no thermal effects shows well agreement with those by the membrane theory.

Structural Vibration Analysis of a Large Two-Stroke Engine and Foundation System for Stationary Power Plants (발전용 대형 2 행정 디젤 엔진 및 기초의 구조 진동해석)

  • 박종포;신언탁
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.493-499
    • /
    • 2000
  • Structural vibration analysis of the stationary power plant system employing a large two-stroke low speed diesel engine is performed to verify that the vibration characteristics of the system meet design requirements, The system consists of the diesel engine generator and concrete foundation including pile and soil. The system is modeled in the form of a mass-elastic system of 5 degrees of freedom for vibration analysis. Excitation moments and dynamic parameters including engine body stiffness soil stiffness and damping are identified for the analysis, Results of structural vibration analysis of the system are presented and compared with measurements in this paper.

  • PDF

Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis

  • Arefi, Mohammad;Zur, Krzysztof Kamil
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.615-623
    • /
    • 2020
  • In this paper, free vibration analysis of a functionally graded cylindrical nanoshell resting on Pasternak foundation is presented based on the nonlocal elasticity theory. A two-dimensional formulation along the axial and radial directions is presented based on the first-order shear deformation shell theory. Hamilton's principle is employed for derivation of the governing equations of motion. The solution to formulated boundary value problem is obtained based on a harmonic solution and trigonometric functions for various boundary conditions. The numerical results show influence of significant parameters such as small scale parameter, stiffness of Pasternak foundation, mode number, various boundary conditions, and selected dimensionless geometric parameters on natural frequencies of nanoshell.