Browse > Article
http://dx.doi.org/10.12989/eas.2021.21.6.563

Ground motion intensity measure to evaluate seismic performance of rocking foundation system  

Ko, Kil-Wan (Department of Civil and Environmental Engineering, University of California)
Ha, Jeong-Gon (Advanced Structures and Seismic Safety Research Divison, Korea Atomic Energy Research Institute)
Publication Information
Earthquakes and Structures / v.21, no.6, 2021 , pp. 563-576 More about this Journal
Abstract
The rocking foundation is effective for reducing structural seismic demand and avoiding overdesign of the foundation. It is crucial to evaluate the performance of rocking foundations because they cause plastic hinging in the soil. In this study, to derive optimized ground motion intensity measures (IMs) for rocking foundations, the efficiency of IMs correlated with engineering demand parameters (EDPs) was estimated through the coefficient determination using a physical modeling database for rocking shallow foundations. Foundation deformations, the structural horizontal drift ratio, and contribution in drift from foundation rotation and sliding were selected as crucial EDPs for the evaluation of rocking foundation systems. Among 15 different IMs, the peak ground velocity exhibited the most efficient parameters correlated with the EDPs, and it was discovered to be an efficient ground motion IM for predicting the seismic performance of rocking foundations. For vector regression, which uses two IMs to present the EDPs, the IMs indicating time features improved the efficiency of the regression curves, but the correlation was poor when these are used independently. Moreover, the ratio of the column-hinging base shear coefficient to the rocking base shear coefficient showed obvious trends for the accurate assessment of the seismic performance of rocking foundation-structure systems.
Keywords
controlling rocking parameter; database of rocking shallow foundation; dynamic centrifuge test; ground motion intensity measures; rocking foundation; soil-foundation-structure interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ali, S.B. and Kim, D. (2017), "Wavelet analysis of soil-structure interaction effects on seismic responses of base-isolated nuclear power plants", Earthq. Struct., 13(6), 561-572. http://doi.org/10.12989/eas.2017.13.6.561.   DOI
2 Kim, D.K., Lee, S.H, Kim, D.S., Choo, Y.W. and Park, H.G. (2015), "Rocking effect of a mat foundation on the earthquake response of structures", J. Geotech. Geoenviron. Eng., 141, 04014085. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001207.   DOI
3 Anastasopoulos, I., Gazetas, G., Loli, M., Apostolou, M. and Gerolymos, N. (2010), "Soil failure can be used for seismic protection of structures", Bull. Earthq. Eng., 8, 309-326. https://doi.org/10.1007/s10518-009-9145-2.   DOI
4 Anastasopoulos, I., Gelagoti, F., Kourkoulis, R. and Gazetas, G. (2011), "Simplified constitutive model for simulation of cyclic response of shallow foundations: Validation against laboratory tests", J. Geotech. Geoenviron. Eng., 137(12), 1154-1168. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000534.   DOI
5 Anastasopoulos, I., Kourkoulis, R., Gelagoti, F. and Papadopoulos, E. (2012), "Rocking response of SDOF systems on shallow improved sand: An experimental study", Soil Dyn. Earthq. Eng., 40, 15-33. https://doi.org/10.1016/j.soildyn.2012.04.006.   DOI
6 Anastasopoulos, I., Loli, M., Georgarakos, T. and Drosos, V. (2013), "Shaking table testing of rocking-isolated bridge pier on sand", J. Earthq. Eng., 17(1), 1-32. https://doi.org/10.1080/13632469.2012.705225.   DOI
7 Aydemir, M.E. and Aydemir, C. (2019), "Residual displacement estimation of simple structures considering soil structure interaction", Earthq. Struct., 16(1), 69-82. http://doi.org/10.12989/eas.2019.16.1.069.   DOI
8 Hakhamaneshi, M. and Kutter, B.L. (2016), "Effect of footing shape and embedment on the settlement, recentering, and energy dissipation of shallow footings subjected to rocking", J. Geotech. Geoenviron. Eng., 142(12), 04016070. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001564.   DOI
9 Ghayoomi, M. and Dashti, S. (2015), "Effect of ground motion characteristics on seismic soil-foundation-structure interaction", Earthq. Spectra, 31(3), 1789-1812. https://doi.org/10.1193/040413EQS089M.   DOI
10 Ko, K.W., Ha, J.G., Park, H.G. and Kim, D.S. (2018), "Soil-rounding effect on embedded rocking foundation via horizontal slow cyclic tests", J. Geotech. Geoenviron. Eng., 144, 04018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001848.   DOI
11 Deng, L. and Kutter, B.L. (2012), "Characterization of rocking shallow foundations using centrifuge model tests", Earthq. Eng. Struct. Dyn., 41, 1043-1060. https://doi.org/10.1002/eqe.1181.   DOI
12 Benjamin, J.R. (1988), "A criterion for determining exceedance of the operating basis earthquake", EPRI Report NP-5930, Electric Power Research Institute, Palo Alto, California.
13 Bray, J.D. and Travasarou, T. (2007), "Simplified procedure for estimating earthquake-induced deviatoric slope displacements", J. Geotech. Geoenviron. Eng., 133(4), 381-392. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(381).   DOI
14 Crespellani, T., Madiai, C. and Vannucchi, G. (1998), "Earthquake destructiveness potential factor and slope stability", Geotechnique, 48(3), 411-419. https://doi.org/10.1680/geot.1998.48.3.411.   DOI
15 Deviprasad, B.S. and Dodagoudar, G.R. (2020), "Seismic response of bridge pier supported on rocking shallow foundation", Geomech. Eng., 21(1), 73-84. http://doi.org/10.12989/gae.2020.21.1.073.   DOI
16 Gajan, S. and Kutter, B.L. (2009), "Effects of moment-to-shear ratio on combined cyclic load-displacement behavior of shallow foundations from centrifuge experiments", J. Geotech. Geoenviron. Eng., 135, 1044-1055. https://doi.org/10.1061/(ASCE)gt.1943-5606.0000034.   DOI
17 Gavras, A.G., Kutter, B.L., Hakhamaneshi, M., Gajan, S., Tsatsis, A., Sharma, K., Kohno, T., Deng, L., Anastasopoulos, I. and Gazetas, G. (2020), "Database of rocking shallow foundation performance: Dynamic shaking", Earthq. Spectra, 36(2), 960-982. https://doi.org/10.1177/8755293019891727.   DOI
18 Ko, K.W., Ha, J.G., Park, H.J. and Kim, D.S. (2019), "Centrifuge modeling of improved design for rocking foundation using short piles", J. Geotech. Geoenviron. Eng., 145(8), 04019031. https://doi.org/10.1061/(ASCE)gt.1943-5606.0002064.   DOI
19 Ko, K.W., Ha, J.G., Park, H.J. and Kim, D.S. (2021), "Investigation of period-lengthening ratio for single-degree-of-freedom structures using dynamic centrifuge test", J. Earthq. Eng., 25(7), 1358-1380. https://doi.org/10.1080/13632469.2019.1576557.   DOI
20 Karakas, A.I., Ozgan, K. and Daloglu, A.T. (2018), "Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model", Earthq. Struct., 14(1), 85-94. http://doi.org/10.12989/eas.2018.14.1.085.   DOI
21 Kokkali, P., Abdoun, T. and Anastasopoulos, I. (2015), "Centrifuge modeling of rocking foundations on improved soil", J. Geotech. Geoenvironm. Eng., 141(10), 04015041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001315.   DOI
22 Liu, W., Hutchinson, T.C., Gavras, A.G., Kutter, B.L. and Hakhamaneshi, M. (2015), "Seismic behavior of frame-wall-rocking foundation systems. I: Test program and slow cyclic results", J. Struct. Eng., 141, 04015059. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000637.   DOI
23 Trifunac, M.D. and Brady, A.G. (1975), "A study on the duration of strong earthquake ground motion", Bull. Seismol. Soc. Am., 65(3), 581-626. https://doi.org/10.1785/BSSA0650030581.   DOI
24 Kramer, S.L. and Mitchell, R.A. (2006), "Ground motion intensity measures for liquefaction hazard evaluation", Earthq. Spectra, 22(2), 413-438. https://doi.org/10.1193/1.2194970.   DOI
25 McCann, M.W. and Shah, H.C. (1979), "Determining strong-motion duration of earthquakes", Bull. Seismol. Soc. Am., 69(4), 1253-1265. https://doi.org/10.1785/BSSA0690041253.   DOI
26 Schofield, A.N. (1980), "Cambridge geotechnical centrifuge operations", Geotechnique, 30(3), 227-268. https://doi.org/10.1680/geot.1980.30.3.227.   DOI
27 Luco, N. and Cornell, C.A. (2007), "Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions", Earthq. Spectra, 23(2), 357-392. https://doi.org/10.1193/1.2723158.   DOI
28 Ngo, V.L., Kim, J.M. and Lee, C. (2019), "Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment", Geomech. Eng., 19(5), 407-420. https://doi.org/10.12989/gae.2019.19.5.407.   DOI
29 Rathje, E.M., Abrahamson, N.A. and Bray, J.D. (1998), "Simplified frequency content estimates of earthquake ground motions", J. Geotech. Geoenviron. Eng., 124, 150-159. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(150).   DOI
30 Travasarou, T. and Bray, J.D. (2003), "Optimal ground motion intensity measures for assessment of seismic slope displacements", Proceedings of the 2003 Pacific Conference on Earthquake Engineering, Christchurch, New Zealand.
31 Von Thun, J.L. Rochim, L.H., Scott, G.A. and Wilson, J.A. (1988), "Earthquake ground motions for design and analysis of dams", Earthquake Engineering and Soil Dynamics II-Recent Advances in Ground-Motion Evaluation, 20, 463-481.
32 Gajan, S., Soundararajan, S., Yang, M. and Akchurin, D. (2020), "Effects of rocking coefficient and critical contact area ratio on the performance of rocking foundations from centrifuge and shake table experimental results", Soil Dyn. Earthq. Eng., 141, 106502. https://doi.org/10.1016/j.soildyn.2020.106502.   DOI
33 Dashti, S. and Karimi, Z. (2017), "Ground motion intensity measures to evaluate I: The liquefaction hazard in the vicinity of shallow-founded structures", Earthq. Spectra, 33(1), 241-276. https://doi.org/10.1193/103015eqs162m.   DOI
34 Arias, A. (1970), Measure of Earthquake Intensity, Ed. R.J. Hansen, Seismic Design for Nuclear Power Plants, MIT Press, Cambridge, Mass.
35 Fernandez-Sola, L.R. and Huerta-Ecatl, J.E. (2018), "Inelastic behavior of systems with flexible base", Earthq. Struct., 14(5), 411-424. http://doi.org/10.12989/eas.2018.14.5.411.   DOI
36 Gajan, S. and Kutter, B.L. (2008), "Capacity, settlement, and energy dissipation of shallow footings subjected to rocking", J. Geotech. Geoenviron. Eng., 134, 1129-1141. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1129).   DOI
37 Gajan, S., Kutter, B.L., Phalen, J.D., Hutchinson, T.C. and Martin, G.R. (2005), "Centrifuge modeling of load-deformation behavior of rocking shallow foundations", Soil Dyn. Earthq. Eng., 25, 773-783. https://doi.org/10.1016/j.soildyn.2004.11.019.   DOI
38 Gazetas, G. (2015), "4th Ishihara lecture: Soil-foundation-structure systems beyond conventional seismic failure thresholds", Soil Dyn. Earthq. Eng. 68, 23-39. https://doi.org/10.1016/j.soildyn.2014.09.012.   DOI
39 Gazetas, G., Anastasopoulos, I. and Garini, E. (2014), "Geotechnical design with apparent seismic safety factors well-bellow 1", Soil Dyn. Earthq. Eng. 57, 37-45. https://doi.org/10.1016/j.soildyn.2013.10.002.   DOI
40 Housner, G.W. (1963), "The behavior of inverted pendulum structures during earthquakes", Bull. Seismol. Soc. Am., 53(2), 403-417. https://doi.org/10.1785/BSSA0530020403.   DOI