• Title/Summary/Keyword: two-dimensional shapes

Search Result 360, Processing Time 0.03 seconds

A Study on Stereo Visualization of the X-ray Scanned Image Based on Volume Reconstruction (볼륨기반 X-선 스캔영상의 3차원 형상화 연구)

  • Lee, Nam-Ho;Park, Soon-Yong;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1583-1590
    • /
    • 2011
  • As the existing radiation scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. This research analyzes the applicability of the stereo image processing technique to X-ray scanned images. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. As the radiation image is just a density information of the scanned object, the direct application of the general stereo image processing techniques to it is inefficient. To overcome this limitation of a stereo image processing in radiation area, we reconstruct 3-D shapes of the edges of the objects. Also, we proposed a new volume based 3D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment.

Robust Planar Shape Recognition Using Spectrum Analyzer and Fuzzy ARTMAP (스펙트럼 분석기와 퍼지 ARTMAP 신경회로망을 이용한 Robust Planar Shape 인식)

  • 한수환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.34-42
    • /
    • 1997
  • This paper deals with the recognition of closed planar shape using a three dimensional spectral feature vector which is derived from the FFT(Fast Fourier Transform) spectrum of contour sequence and fuzzy ARTMAP neural network classifier. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These spectral feature vectors are invariant to shape translation, rotation and scale transformation. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments including 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the recognition problems of noisy shapes.

  • PDF

Study of a Model Turbine Design Case Via Application of Spiral Case and Draft Tube Shape in Hydraulic Power Plant Modernization (수력 현대화 개·대체 시 스파이럴 케이스와 흡출관 형상에 따른 모델수차 설계 적용사례 연구)

  • Park, Nohyun;Kim, Jin-Hyuk;Kim, Seung-Jun;Hyun, Jungjae;Choi, Jongwoong;Cho, Yong
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • Recently, turbines operating in hydro power plants are required to undergo renovation and modernization due to their age exceeding 30 years. In the process of renovation or modernization, a performance test of the scaled-down model is necessary to verify the performance of the real-size model. This model test method, with criteria that is similar to that of a real turbine, is the most economical and important method. Furthermore, the shapes of the runner and guide vane can be modified or replaced easily. However, during the process of modernization, the components with the spiral casing and draft tube are impossible to repair or replace because of the buried ground. Thus, in this study, numerical analysis is conducted to investigate the hydraulic performance based on the difference between the two-dimensional computer-aided design (CAD) shape and the real three-dimensional scan shape of the spiral casing and draft tube.

INFLUENCE OF MINIPLATE SHAPES AS SKELETAL ANCHORAGE FOR APPLICATION OF ORTHOPEDIC FORCE: A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (악정형력 적용을 위한 골내 고정원으로서 미니플레이트 형상의 영향: 3차원 유한요소법적 연구)

  • Lee, Nam-Ki;Baek, Seung-Hak;Choi, Dong-Soon;Park, Young-Wook;Kim, Ji-Hyuck;Cha, Bong-Kuen
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • Purpose: This study was performed to evaluate the stress distribution in the bone and the displacement distribution of the miniscrew under orthopedic force with two different types of miniplate design as skeletal anchorage for orthopedic treatment. Materials and methods: Finite element models were made for 6-hole miniplate (0.8mm in thickness), which were designed in two different shapes-one is curvilinear shaped (C plate, Jeil Medical Co., Korea) and another, Y shaped (Y plate), fixed with 3 pieces of miniscrew 2mm-diameter and 6mm-long respectively. A traction force of 4 N was applied in $0^{\circ}$, $30^{\circ}$ and $60^{\circ}$ to imaginary axis connecting two unfixed distalmost holes of the miniplate. Results: The maximum von Mises stress in the bone was much greater in the cortical portion rather than in the cancellous portion. C plate showed greater maximum von Mises stress in the cortical bone than Y plate. The maximum displacement of the miniscrew was greater in C plate than Y plate. The more increased the angle of the applied orthopedic force, the greater maximum von Mises stress in the bone and maximum displacement of the miniscrew. It was observed that in C plate, the von Mises stress in the bone and displacement of the miniscrew were distributed around the distalmost screw-fixed area. Conclusions: The results suggest that Y plate should have the advantage over C plate and in the placement of the miniplate, its imaginary axis should be placed as parallel as possible to the direction of orthopedic force to obtain its primary stability.

Study on a Shape Deformation of Water Meniscus for the Rectangular and Circular Tips Moving Horizontally (사각 및 원형 팁의 횡운동에 의한 물 메니스커스 형상변화에 관한 연구)

  • Kim, Sang-Sun;Son, Sung-Wan;Ha, Man-Yeong;Yoon, Hyun-Sik;Kim, Hyung-Rak
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.843-851
    • /
    • 2011
  • A two-dimensional immiscible water meniscus deformation phenomena on a moving tip in a channel has been investigated by using lattice Boltzmann method involving two-phase model. We studied the behavior of a water meniscus between the tip and a solid surface. The contact angles of the tip and a solid surface considered are in the range from $10^{\circ}$ to $170^{\circ}$. The velocity of the tip used in the study are 0.01, 0.001, and 0.0001. The shapes of tip considered are rectangular and circular. The behavior of water confined between the tip and a solid surface depends on the contact angles of the tip and a solid surface, and the tip velocity. When the tip is moving, we can observe the various behaviors of shear deformation of a water meniscus. As time goes on, the behavior of a water meniscus can be classified into three different patterns which are separated from the tip or adhered to the tip or sticked to a solid surface according to the contact angles and the tip velocity.

Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts (그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.572-587
    • /
    • 2008
  • The Self-organizing Feature Map(SOFM) that is one of unsupervised neural networks is a very powerful tool for data clustering and visualization in high-dimensional data sets. Although the SOFM has been applied in many engineering problems, it needs to cluster similar weights into one class on the trained SOFM as a post-processing, which is manually performed in many cases. The traditional clustering algorithms, such as t-means, on the trained SOFM however do not yield satisfactory results, especially when clusters have arbitrary shapes. This paper proposes automatic clustering on trained SOFM, which can deal with arbitrary cluster shapes and be globally optimized by graph cuts. When using the graph cuts, the graph must have two additional vertices, called terminals, and weights between the terminals and vertices of the graph are generally set based on data manually obtained by users. The Proposed method automatically sets the weights based on mode-seeking on a distance matrix. Experimental results demonstrated the effectiveness of the proposed method in texture segmentation. In the experimental results, the proposed method improved precision rates compared with previous traditional clustering algorithm, as the method can deal with arbitrary cluster shapes based on the graph-theoretic clustering.

Three-dimensional Model Generation for Active Shape Model Algorithm (능동모양모델 알고리듬을 위한 삼차원 모델생성 기법)

  • Lim, Seong-Jae;Jeong, Yong-Yeon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.28-35
    • /
    • 2006
  • Statistical models of shape variability based on active shape models (ASMs) have been successfully utilized to perform segmentation and recognition tasks in two-dimensional (2D) images. Three-dimensional (3D) model-based approaches are more promising than 2D approaches since they can bring in more realistic shape constraints for recognizing and delineating the object boundary. For 3D model-based approaches, however, building the 3D shape model from a training set of segmented instances of an object is a major challenge and currently it remains an open problem in building the 3D shape model, one essential step is to generate a point distribution model (PDM). Corresponding landmarks must be selected in all1 training shapes for generating PDM, and manual determination of landmark correspondences is very time-consuming, tedious, and error-prone. In this paper, we propose a novel automatic method for generating 3D statistical shape models. Given a set of training 3D shapes, we generate a 3D model by 1) building the mean shape fro]n the distance transform of the training shapes, 2) utilizing a tetrahedron method for automatically selecting landmarks on the mean shape, and 3) subsequently propagating these landmarks to each training shape via a distance labeling method. In this paper, we investigate the accuracy and compactness of the 3D model for the human liver built from 50 segmented individual CT data sets. The proposed method is very general without such assumptions and can be applied to other data sets.

Three-Dimensional Vibration Analysis of Solid and Hollow Hemispheres Having Varying Thickness (변두께를 갖는 두꺼운 반구형 쉘과 반구헝체의 3차원적 진동해석)

  • 심현주;장경호;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components μ/sub Φ/, μ/sub z/, and μ/sub θ/ in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the Φ and z directions. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3-D Ritz solutions and other 3-D finite element ones.

Manikin Model Study on Reproducibility and Accuracy of Maxillofacial Measurements Determined by Stereocamera: Comparative Study of Direct Anthropometry, Digitizer and Stereophotogrammetery (스테레오 카메라를 이용한 안면부 측정의 재현성과 정확도에 대한 마네킨을 이용한 연구: 직접 인체계측, Digitizer, Stereophotogrammetry의 비교 연구)

  • Jeoung, Youn-Wook;Yang, Ji-Woong;Chung, Kwang;Kook, Min-Suk;Oh, Hee-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • Purpose: Recently, a three dimensional approach to hard and soft tissues of the maxillofacial area has been widely used. This study was to evaluate the reproducibility and accuracy of a stereocamera compared to actual measurement methods using a digital caliper and digitizer. Methods: The stereoscopies of 7 head dummies with different sizes and shapes were obtained using a Di3D system (Dimensional Imaging, Glasgow, UK) after marking reference points on facial areas. From the obtained stereoscopy, 10 measurements representing the width, height and depth of each of the facial sections of the dummy were measured twice using a three dimensional reverse engineering software program (RapidForm$^{TM}$ 2006, Inus, Seoul, Korea). The x, y, and z coordinates of each of the three dimensional measurements were obtained and distances between two points were calculated. All procedures were repeated twice. The actual measurement method was performed twice, directly on dummies, using a digital caliper and values were compared with the previously determined values. Results: The results were as follows. In the ANOVA analysis, there were no significant statistical differences among the three measurement methods. In the Bonferroni analysis, with adjustments applied for multiple comparisons, there was no difference between actual measurement methods using a digitizer and a digital caliper. However, there was some difference between using a stereocamera and actual measurement methods using a digitizer and a digital caliper in values of $Ex_{Rt}-Ex_{Lt}$, $En_{Rt}-En_{Lt}$, $Ala_{Rt}-Ala_{Lt}$, $Ch_{Rt}-Ch_{Lt}$, G-Pg', $Ala_{Rt}$-Prn, $Ala_{Rt}$-Prn. The mean value for technical error in measurement (TEM) in Di3D (0.98 mm) was slightly higher than for a digital caliper (0.17 mm) and a digitizer (0.30 mm). In an intraclass correlation coefficient (ICC) there were no significant differences among the three measurement methods, but the Di3D system with the stereocamera showed relatively lower reproducibility compared to actual measurement methods using a digitizer and a digital caliper. Conclusion: These results indicate that some complementary measures may be needed to improve accuracy and reproducibility in the Di3D system with stereocamera.

Three Dimensional Vibration Analysis of Thick, Circular and Annular Plates with Nonlinear Thickness Variation (비선형 두께 변분을 갖는 두꺼운 원형판과 환형판의 3차원적 진동해석)

  • 장승환;심현주;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.119-129
    • /
    • 2004
  • A three dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, circular and annular plates with nonlinear thickness variation along the radial direction. Unlike conventional plate theories, which are mathematically two dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components u/sub s/, u/sub z/, and u/sub θ/ in the radial, thickness, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the s and z directions. Potential (strain) and kinetic energies of the plates are formulated, and the Ritz method is used to solve the eigenvalue problem thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four digit exactitude is demonstrated for the first five frequencies of the plates. Numerical results we presented for completely free, annular and circular plates with uniform linear, and quadratic variations in thickness. Comparisons are also made between results obtained from the present 3D and previously published thin plate (2D) data.