• Title/Summary/Keyword: two-dimensional beam

Search Result 563, Processing Time 0.027 seconds

Repeated injections of botulinum toxin into the masseter muscle induce bony changes in human adults: A longitudinal study

  • Lee, Hwa-Jin;Kim, Sung-Jin;Lee, Kee-Joon;Yu, Hyung-Seog;Baik, Hyoung-Seon
    • The korean journal of orthodontics
    • /
    • v.47 no.4
    • /
    • pp.222-228
    • /
    • 2017
  • Objective: To evaluate soft- and hard-tissue changes in the mandibular angle area after the administration of botulinum toxin type A (BoNT-A) injection to patients with masseteric hypertrophy by using three-dimensional cone-beam computed tomography (3D-CBCT). Methods: Twenty volunteers were randomly divided into two groups of 10 patients. Patients in group I received a single BoNT-A injection in both masseter muscles, while those in group II received two BoNT-A injections in each masseter muscle, with the second injection being administered 4 months after the first one. In both groups, 3D-CBCT was performed before the first injection and 6 months after the first injection. Results: Masseter muscle thicknesses and cross-sectional areas were significantly reduced in both groups, but the reductions were significantly more substantial in group II than in group I. The intergonial width of the mandibular angle area did not change significantly in either group. However, the bone volume of the mandibular gonial angle area was more significantly reduced in group II than in group I. Conclusions: The repeated administration of BoNT-A injections may induce bone volume changes in the mandibular angle area.

Effects of Light Incident Mode on Optical Scattering of Au Nanoparticle by Localized Surface Plasmon Resonance (빔의 입사모드가 금 나노입자의 국소표면플라즈몬 산란광에 미치는 영향)

  • Lee, Taek-Sung;Lee, Kyeong-Seok;Kim, Won-Mok;Lee, Jang-Kyo;Byun, Seok-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.307-313
    • /
    • 2009
  • Quantitative analysis of optical scattering intensities from a Au nanoparticle with a diameter of 100 nm, which is effected by the localized surface plasmon resonance (LSPR), were numerically carried out by using a dark-field detection scheme on prism basal plane for two different beam incident modes of reflectance (R-mode) and transmittance (T-mode). Two-dimensional finite difference time domain (FDTD) algorithm was adopted, and its applicabilibility was verified by comparing the simulation results with the theoretical ones. Simulation results of the scattered light intensities from a Au nanoparticle revealed that the scattered intensity of the T-mode was much stronger than that of R-mode. Comparison of the calculated results with the theoretical intensity distribution on the prism showed that the scattered intensity is marimized when the evanescent field, which is generated from the interface of prism and air at TIR angle, is coupled with Au nanoparticle.

Identification of nonlinear elastic structures using empirical mode decomposition and nonlinear normal modes

  • Poon, C.W.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.423-437
    • /
    • 2007
  • The empirical mode decomposition (EMD) method is well-known for its ability to decompose a multi-component signal into a set of intrinsic mode functions (IMFs). The method uses a sifting process in which local extrema of a signal are identified and followed by a spline fitting approximation for decomposition. This method provides an effective and robust approach for decomposing nonlinear and non-stationary signals. On the other hand, the IMF components do not automatically guarantee a well-defined physical meaning hence it is necessary to validate the IMF components carefully prior to any further processing and interpretation. In this paper, an attempt to use the EMD method to identify properties of nonlinear elastic multi-degree-of-freedom structures is explored. It is first shown that the IMF components of the displacement and velocity responses of a nonlinear elastic structure are numerically close to the nonlinear normal mode (NNM) responses obtained from two-dimensional invariant manifolds. The IMF components can then be used in the context of the NNM method to estimate the properties of the nonlinear elastic structure. A two-degree-of-freedom shear-beam building model is used as an example to illustrate the proposed technique. Numerical results show that combining the EMD and the NNM method provides a possible means for obtaining nonlinear properties in a structure.

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.62-68
    • /
    • 2002
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame- front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, un strained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF

A Study on the Comparison of Performances Between Direct Method and Approximation Method in Structural Optimization (구조최적설계시 직접법 및 근사법 알고리즘의 성능 비교에 관한 연구)

  • 박영선;이상헌;박경진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.313-322
    • /
    • 1994
  • Structural optimization has been developed by two methods. One is the direct method which applies the Nonlinear Programming (NLP) algorithm directly to the structural optimization problem. This method is known to be very excellent mathematically. However, it is very expensive for large-scale problems due to the one-dimensional line search. The other method is the approximation method which utilizes the engineering senses very well. The original problem is approximated to a simple problem and an NLP algorithm is adopted for solving the approximated problems. Practical solutions are obtained with low cost by this method. The two methods are compared through standard structural optimization problems. The Finite element method with truss and beam elements is used for the structural and sensitivity analyses. The results are analyzed based on the convergence performances, the number is function calculations, the quality of the cost functions, and etc. The applications of both methods are also discussed.

Three-dimensional finite element simulation and application of high-strength bolts

  • Long, Liji;Yan, Yongsong;Gao, Xinlin;Kang, Haigui
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.501-512
    • /
    • 2016
  • High-strength structural bolts have been utilized for beam-to-column connections in steel-framed structural buildings. Failure of these components may be caused by the bolt shank fracture or threads stripping-off, documented in the literature. Furthermore, these structural bolts are galvanized for corrosion resistance or quenched-and-tempered in the manufacturing process. This paper adopted the finite element simulation to demonstrate discrete mechanical performance for these bolts under tensile loading conditions, the coated and uncoated numerical model has been built up for two numerical integration methods: explicit and implicit. Experimental testing and numerical methods can fully approach the failure mechanism of these bolts and their ultimate load capacities. Comparison has also been conducted for two numerical integration methods, demonstrating that the explicit integration procedure is also suitable for solving quasi-static problems. Furthermore, by using precise bolt models in T-Stub, more accurately simulate the mechanical behavior of T-Stub, which will lay the foundation of the mechanical properties of steel bolted joints.

A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid;Simsek, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.727-741
    • /
    • 2014
  • The functionally graded beam (FGB) is investigated in this study on both dynamic and static loading in case of resting on a soil medium rather than on the usual Winkler-Pasternak elastic foundation. The powerful ABAQUS software was used to model the problem applying finite element method. In the present study, two different soil models are taken into account. In the first model, the soil is assumed to be an elastic plane stress medium. In the second soil model, the Drucker-Prager yield criterion, which is one of the most well-known elastic-perfectly plastic constitutive models, is used for modelling the soil medium. The results are shown to evaluate the effects of the different soil models, stiffness values of the elastic soil medium on the normal and shear stress and free vibration properties. A comparison was made to those from the existing literature. Numerical results show that considering real soil as a continuum space affects the results of the bending and the modal properties significantly.

Performance of RC moment frames with fixed and hinged supports under near-fault ground motions

  • Mohammadi, Mohammad Hossain;Massumi, Ali;Meshkat-Dini, Afshin
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.89-101
    • /
    • 2017
  • The focus of this paper is the study on the seismic performance of RC buildings with two different connections at the base level under near-fault earthquakes. It is well-known that the impulsive nature of the near-fault ground motions causes severe damages to framed buildings especially at base connections. In the scope of this study, two types of 3-dimensional RC Moment Frames with Fixed Support (MFFS) and Hinged Support (MFHS) containing 5 and 10 stories are assessed under an ensemble of 11 strong ground motions by implementing nonlinear response history analysis. The most vulnerable locations of MFFS, are the connections of corner columns to foundation especially under strong earthquakes. On the other hand, using beams at the base level as well as hinged base connections in MFHS buildings, prevents damages of corner columns and achieves more ductile behavior. Results denote that the MFHS including Base Level Beams (BLB) significantly shows better behavior compared with MFFS, particularly under pulse-type records. Additionally, the first story beams and also interior components undergo more actions. Role of the BLBs are similar to fuses decreasing the flexural moments of the corner columns. The BLBs can be constructed as replaceable members which provide the reparability of structures.

Study on failure mechanism of multi-storeyed reinforced concrete framed structures

  • Ahmed, Irfan;Sheikh, Tariq Ahmad;Gajalakshmi, P.;Revathy, J.
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Failure of a Multi-storeyed reinforced concrete framed structure occurs when a primary vertical structural component is isolated or made fragile, due to artificial or natural hazards. Load carried by vertical component (column) is transferred to neighbouring columns in the structure, if the neighbouring column is incompetent of holding the extra load, this leads to the progressive failure of neighbouring members and finally to the failure of partial or whole structure. The collapsing system frequently seeks alternative load path in order to stay alive. One of the imperative features of collapse is that the final damage is not relative to the initial damage. In this paper, the effect on the column and beam adjacent to statically removed vertical element in terms of axial force, shear force and bending moment is investigated. Using Alternate load path method, numerical modelling of two dimensional one bay, two bay with variation in storey heights are analysed with FE model in order to obtain better understanding of failure mechanism of multi-storeyed reinforced concrete framed structure. The results indicate that the corner column is more susceptible to progressive collapse when compared to middle column, using this simplified methodology one can easily predict how the structure can be made to stay alive in case of sudden failure of any horizontal or vertical structural element before designing.

Three-dimensional evaluation of mandibular width after mandibular asymmetric setback surgery using sagittal split ramus osteotomy

  • Seong-Sik Kim;Sung-Hun Kim;Yong-Il Kim;Soo-Byung Park
    • The korean journal of orthodontics
    • /
    • v.53 no.2
    • /
    • pp.99-105
    • /
    • 2023
  • Objective: The study aimed to evaluate the changes in mandibular width after sagittal split ramus osteotomy (SSRO) in patients with mandibular asymmetric prognathism using cone-beam computed tomography (CBCT). Methods: Seventy patients who underwent SSRO for mandibular setback surgery were included in two groups, symmetric (n = 35) and asymmetric (n = 35), which were divided according to the differences in their right and left setback amounts. The mandibular width was evaluated three-dimensionally using CBCT images taken immediately before surgery (T1), 3 days after surgery (T2), and 6 months after surgery (T3). Repeated measures analysis of variance was applied to verify the differences in mandibular width statistically. Results: Both groups showed a significant increase in the mandibular width at T2, followed by a significant decrease at T3. No significant difference was observed between T1 and T3 in any of the measurements. No significant differences were found between the two groups (p > 0.05). Conclusions: After mandibular asymmetric setback surgery using SSRO, the mandibular width increased immediately but returned to its original width 6 months after surgery.