• Title/Summary/Keyword: two order rule

Search Result 311, Processing Time 0.028 seconds

Design of Fuzzy Controller with dual control rules using $e-{\Delta}e$ phase plane ($e-{\Delta}e$ 위상평면을 이용한 이중 제어규칙을 갖는 퍼지 제어기 설계)

  • 박광묵;신위재
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1149-1152
    • /
    • 1999
  • In this paper we analyzed each region of specific points and e-Δephase plane in order to make fuzzy rule base. After we composed the fuzzy control rules which can decrease rise time, delay time, maximum overshoot than basic fuzzy control rules. The composed method are converged more rapidly than single rule base in convergence region. Proposed method is alternately use at specific points of e-Δephase plane with two fuzzy control rules, that is one control rule occruing the steady state error used in transient region and another fuzzy control rule use to decrease the steady state error and rapidly converge at the convergence region. Two fuzzy control rules in the e-Δe phase plane decide the change time according to response characteristics of plants. As the results of simulation through the second order plant and the delay time plan, Proposed dual fuzzy control rules get the good response compare with the basic fuzzy control rule.

  • PDF

Component Commonality and Order Matching Rules in Make-to-Forecast Production

  • Morikawa, Katsumi;Deguchi, Yusuke;Takahashi, Katsuhiko;Hirotani, Daisuke
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.196-203
    • /
    • 2010
  • Make-to-forecast production is a way to realize high customization and fast responsiveness. This study firstly investigates the effect of introducing a common component in a make-to-forecast production environment. The common component can eliminate a modification step, which is a major cost component in make-to-forecast production. It is illustrated, however, that introducing a versatile component that merely covers several variants is unattractive, and thus adding values to the common component is inevitable in this environment. Secondly, an order-matching rule under the condition that two partially overlapped delivery lead time intervals exist is proposed. The rule considers the effect of matching orders to units that can cover both intervals. An alternative re-matching rule is also developed and examined. Numerical experiments clarify that the proposed rule generally realizes higher contribution ratio and lower percentages of orphans and rejected orders. The proposed re-matching rule increases the average contribution ratio at the expense of increased orphans and order rejections.

Density-Order Index Rule for Stock Location in a Distribution Warehouse

  • Hwang, Hark;Cha, Chun-Nam
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 1989
  • This paper deals with the problem of space allocation of items within a warehouse. Recognizing the importance of weights associated with material handling, mathematical models are developed for two cases, out-and-back selection and storage retrieval interleaving. It is proved that the density order index rule we proposed generates an optimal solution for the first model. An example problem solved with the pairwise interchange method indicates that the rule is also fairly efficient for the second model. The proposed rule is compared with other assignment rules of warehouse space such as COI rule, space and popularity.

  • PDF

Control Strategy for Buck DC/DC Converter Based on Two-dimensional Hybrid Cloud Model

  • Wang, Qing-Yu;Gong, Ren-Xi;Qin, Li-Wen;Feng, Zhao-He
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1684-1692
    • /
    • 2016
  • In order to adapt the fast dynamic performances of Buck DC/DC converter, and reduce the influence on converter performance owing to uncertain factors such as the disturbances of parameters and load, a control strategy based on two-dimensional hybrid cloud model is proposed. Firstly, two cloud models corresponding to the specific control inputs are determined by maximum determination approach, respectively, and then a control rule decided by the two cloud models is selected by a rule selector, finally, according to the reasoning structure of the rule, the control increment is calculated out by a two-dimensional hybrid cloud decision module. Both the simulation and experiment results show that the strategy can dramatically improve the dynamic performances of the converter, and enhance the adaptive ability to resist the random disturbances, and its control effect is superior to that of the current-mode control.

Distribution Planning for a Two-Echelon Distribution System under Fill Rate Constraints (Fill Rate 제약이 존재하는 2단계 분배형 시스템에서의 분배 계획)

  • Kwon, Ick-Hyun;Kim, Sung-Shick;Kim, Chang-Ouk
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.4
    • /
    • pp.125-138
    • /
    • 2006
  • This paper considers a periodic review, two-echelon inventory system with one central warehouse and several re-tailers facing normally distributed demand. The goal is to attain target fill rates, while the systemwide total holding costs are minimized. An important aspect of this problem is material rationing in the case of shortages. If a central warehouse has insufficient inventory to deliver all replenishment orders to retailers, all order quantities are should be adjusted according to some rationing rule. A simple but efficient rationing rule is proposed and compared with the Balanced Stock (BS) rationing as introduced by Heijden which is known to be the best rationing policy in the literature. Numerical results show that the proposed rationing rule is more cost effective than BS rationing, especially for the differences in holding costs between retailers are large.

A Study on the Dispatching Rules of One-process Job Using Computer Simulation (시뮬레이션을 이용한 단공정작업의 스케줄링에 관한 연구)

  • 이기영;김영민
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 2000
  • This paper deals with the selection of a proper dispatching rule for an one-process Job scheduling that follows a particular distribution of an order production. That is, it makes a distribution on an order per unit period and applies to simulation model that uses it. This study consists of two purposes either seeks adequately production scheduling using priority rule or seeks extension of the facilities that increase current production efficiency through computer simulation in scheduling.

  • PDF

Simulation of Ratcheting Behavior under Stress Controlled Cyclic Loading using Two-Back Stress Hardening Constitutive Relation (이중 후방 응력 경화 모델을 이용한 주기 하중에서의 래쳐팅 거동 현상 연구)

  • Hong, S.I.;Hwang, D.S.;Yun, S.J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • In the present work, the ratcheting behavior under uniaxial cyclic loading is analyzed. A comparison between the published and the results from the present model is also included. In order to simulate the ratcheting behavior, Two-Back Stress model is proposed by combining the non-linear Armstrong-Frederick rule and the non-linear Phillips hardening rule based on kinematic hardening equation. It is shown that some ratcheting behaviors can be obtained by adjusting the control material parameters and various evolutions of the kinematic hardening parameter can be obtained by means of simple combination of hardening rules using simple rule of mixtures. The ultimate back stress is also derived for the present combined kinematic hardening models.

Robotized Filament Winding of Full Section Parts: Comparison Between Two Winding Trajectory Planning Rules

  • Sorrentino, L.;Polini, W.;Carrino, L.;Anamateros, E.;Paris, G.
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.1-23
    • /
    • 2008
  • Robotized filament winding technology involves a robot that winds a roving impregnated by resin on a die along the directions of stresses to which the work-piece is submitted in applications. The robot moves a deposition head along a winding trajectory in order to deposit roving. The trajectory planning is a very critical aspect of robotized filament winding technology, since it is responsible for both the tension constancy and the winding time. The present work shows two original rules to plan the winding trajectory of structural parts, whose shape is obtained by sweeping a full section around a 3D curve that must be closed and not crossing in order to assure a continuous winding. The first rule plans the winding trajectory by approximating the part 3D shape with straight lines; it is called the discretized rule. The second rule defines the winding trajectory simply by offsetting a 3D curve that reproduces the part 3D shape, of a defined distance; it is called the offset rule. The two rules have been compared in terms of roving tension and winding time. The present work shows how the offset rule enables achievement of both the required aims: to manufacture parts of high structural performances by keeping the tension on the roving near to the nominal value and to markedly decrease the winding time. This is the first step towards the optimization of the robotized filament winding technology.

Two-Step Filtering Datamining Method Integrating Case-Based Reasoning and Rule Induction

  • Park, Yoon-Joo;Chol, En-Mi;Park, Soo-Hyun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.329-337
    • /
    • 2007
  • Case-based reasoning (CBR) methods are applied to various target problems on the supposition that previous cases are sufficiently similar to current target problems, and the results of previous similar cases support the same result consistently. However, these assumptions are not applicable for some target cases. There are some target cases that have no sufficiently similar cases, or if they have, the results of these previous cases are inconsistent. That is, the appropriateness of CBR is different for each target case, even though they are problems in the same domain. Thus, applying CBR to whole datasets in a domain is not reasonable. This paper presents a new hybrid datamining technique called two-step filtering CBR and Rule Induction (TSFCR), which dynamically selects either CBR or RI for each target case, taking into consideration similarities and consistencies of previous cases. We apply this method to three medical diagnosis datasets and one credit analysis dataset in order to demonstrate that TSFCR outperforms the genuine CBR and RI.

  • PDF

Combined Two-Back Stress Models with Damage Mechanics Incorporated (파손역학이 조합된 이중 후방응력 이동경화 구성방정식 모델)

  • Yun, Su-Jin
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • In the present work, the two-back stress model is proposed and continuum damage mechanics (CDM) is incorporated into the plastic constitutive relation in order to describe the plastic deformation localization and the damage evolution in a deforming continuum body. Coupling between damage mechanics and isothermal rate independent plasticity is performed using the kinematic hardening rule, which in turn is formulated by combining the nonlinear Armstrong-Frederick rule and the Phillips rule. The numerical analyses are carried out within h deformation theory. It is noted that the damage evolution within a work piece accelerates the plastic deformation localization such that the material with lower hardening exponent results in a rapid shear band formation. Moreover, the results from the numerical analysis reflected closely with the micro-structures around the fractured regime. The effects of the various hardening parameters on deformation localization are also investigated. As the nonlinear strain rate description in the back stress evolution becomes dominant, the strain localization becomes intensified as well as the damage evolution.