• Title/Summary/Keyword: two cooperating arms

Search Result 12, Processing Time 0.023 seconds

A Coordination Control Methodlolgy for Two Cooperating Arms Handling a Single Object (단일물체 조작을 위한 두 협조 로봇의 협조제어)

  • Yeo, Hee-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.190-196
    • /
    • 2000
  • A hybrid position/force control scheme to regulate the force and position by dual arms is proposed where two arms are treated as one rm in a kinematic viewpoint. The force error calculated from the information of two force/torque sensors attached to the end of each arm is transferred to minimum configuration space coordinates and then is distributed to total system joint coordinates, The position adjustment at the total con-figuration coordinates is computed based on the effective compliance matrix with respect to total joint coordinates which is obtained by coordinate transformation between the task coordinates and the total joint coordinates. The proposed scheme is applied to sawing task. When the trajectory of the saw is planned to follow a line in a horizontal plane 2 position parameters are to be controlled(i.e., two translational positions) Also a certain level of contact force has to be controlled along the vertical direction(i.e. minus z-direction) not to loose the contact with the object to be sawn. We experimentally show that the performance of the velocity and force response are satisfactory. The proposed hybrid control scheme can be applied to arbitrary two cooperating arm system regardless of their kinematic structure and the number of actuated joints.

  • PDF

Acceleration Bounds of Cooperating Two Robots under Dynamical Constraint (동적 제약 조건하에서 두 대 로봇이 공동으로 잡고 나르는 물체의 최대 가속도 범위 해석)

  • 이지홍;심형원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2709-2712
    • /
    • 2003
  • In this paper, dynamic constraints are considered for the analysis of manipulability of robotics systems comprised of two cooperating arms. Given bounds on the torques of joint actuators for each robot, the purpose of this study is to derive the bounds of task acceleration of object carried by the system. Under the assumption of complete constraint contact, a set of examplar polytope describing acceleration bounds of two cooperating robots are included.

  • PDF

Exerted force minimization for weak points in cooperating multiple robot arms

  • Shin, Young-Dal;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1167-1172
    • /
    • 1990
  • This paper discusses a force distribution scheme which minimizes the weighted norm of the forces/torques applied on weak points of cooperating multiple robot arms. The scheme is proposed to avoid the damage or unwanted motion of any weak point of robots or object stemming from excessive forces/torques. Since the proposed scheme can be used for either the joint torque minimization or the exerted force minimization on the object, it can be regarded as a unified force minimization method for multiple robot arms. The computational complexity in this scheme is analyzed using the properties of Jarcobian. Simulation of two identical PUMA robots held an object is carried out to illustrate the proposed scheme. By the proper choice of the weighting matrix in the performance index, we show that force minimization for a weak point can be achieved, and that the exerted force minimization on the object can be changed to the joint torque minimization.

  • PDF

Determination of an admissible path for two cooperating robot arms (두 대의 로보트 협력 제어를 위한 경로 결정 방법)

  • 임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.310-316
    • /
    • 1986
  • The problem of finding an allowable object trajectory for a cooperating two-robot system is investigated. The method proposed in this paper is based on reformulating the problem as a nonlinear optimization problem with equality constants in terms of the joint variables. The optimization problem is then solved numerically on a computer. The solution automatically gives the corresponding joint variable trajectories as well, thus eliminating the need for solving the inverse kinematic problem. The method has been succesfully applied to an experimental system.

  • PDF

Control Methodology of Multiple Arms for IMS : Experimental Sawing Task by Nonidentical Cooperating Arms (IMS를 위한 로봇 군 제어방법 : 이종 협조 로봇의 톱질 작업)

  • Yeo, Hee-Joo;Suh, Il-Hong;Lee, Byung-Ju;Oh, Sang-Rok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.452-460
    • /
    • 1999
  • Sawing experiments using a two-arm system have been performed in this work. The two-arm system under consideration of two kinematically-nonidentical arms. A passive joint is inserted at the end-point of one robot in order to increase the mobility up to the motion degree required for sawing tasks. A hybrid control algorithm for control of the two-arm system is designed. We experimentally show that the performance of the velocity and force response are satisfactory, and that one additional passive joint not only prevents the system from unwanted yaw motion in the sawing task, but also allows an unwanted pitch motion to be notably reduced by an internal load control. To show the general applicability of the proposed algorithms, we perform experimentation under several different conditions for saw, such as three saw blades, two sawing speeds, and two vertical forces.

  • PDF

A compliant control method for cooperating two arms with asymetric kinematic structures (비대칭 구조를 갖는 두 협조 로봇의 컴플라이언스 제어방법)

  • 여희주;서일홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.40-50
    • /
    • 1996
  • An unified compliant control algorithm to regulate the force by dual arms is proposed, where tow arms are treated as one arm in a kinematic viewpoint. The force error calculated form the information of two force/torque sensors attached to the end of each arm is transferred to minimum actuator coordinates, and then is distributed to total system actuator coordinates. The position adjustment at the total actuator coordinates is computed based on the effective computed based on the effective compliance matrix with respect to total actuator coordinates, which is obtained by coordinate transformation between the task coordinates and the total actuator coordinates. An experiment is carried out for dual arms with asymmetric kinematic structure to control an interaction force between manipulators and the environment. The performances of the proposed control algorithm are experimentally compared to those of dual arms employing master/slave scheme. The proposed compliant control algorithm not only ouperforms other algorithms, but also can be treated as an unified approach n the sense that it can be applied to arbitrary dual arm systems with general kinematic structures.

  • PDF

A study on the hybrid position/force control of two cooperating arms with asymmetric kinematic structures (비대칭 구조를 갖는 두 협조 로봇의 하이브리드 위치/힘 제어에 관한 연구)

  • 여희주;서일홍;홍석규;김창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.743-746
    • /
    • 1996
  • A hybrid control scheme to regulate the force and position by dual arms is proposed, where two arms are treated as one arm in a kinematic viewpoint. Our approach is different from other hybrid control approaches which consider robot dynamics, in the sense that we employ a purely kinematic based approach for hybrid control, with regard to the nature of position-controlled industrial robots. The proposed scheme is applied to sawing task. In the sawing task, the trajectory of the saw grasped by dual arms is planned in an offline fashion. When the trajectory of the saw is planned to follow a line in a horizontal plane, 3 position parameters are to be controlled(i.e, two translational positions and one rotational position). And a certain level of contact force has to be controlled along the vertical direction(i.e., minus z-direction) not to loose the contact with the object to be sawn. Typical feature of sawing task is that the contact position where the force control is to be performed is continuously changing. Therefore, the kinematic mapping between the force controlled position and the joint actuators has to be updated continuously. The effectiveness of the proposed control scheme is experimentally demonstrated. The proposed hybrid control scheme can be applied to arbitrary dual arm systems, regardless of their kinematic structure and the number of actuated joints.

  • PDF

Reconfiguration of a Redundant Manipulator for Task Execution Efficiency (열 효율성을 이용한 잉여 로보트의 재구성)

  • Jang Myoung Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.9-19
    • /
    • 1993
  • This paper presents a new concept of a reconfigurable manipulator system which adjusts its mechanical structure to suit the kinematic characteristics of a given task. A highly redundant manipulator designed as a general purpose manipulator needs to be reconfigured for a specific task. A general task can be decomposed of motion and force components with different control requirements: either gross motion control or fine motion control. Each of these task components are distributed to each part of the manipulator based on the control requirements and the structure of the manipulator. Through the reconfiguration, a redundant manipulator is decomposed into two local arms, and the kinematic characteristics of each local arm is adjusted to suit the assigned task. The reconfigured redundant manipulator has two local arms well-configured for the local tasks and cooperating in serial for a given task. This globally enhances the performance of a redundant manipulator to execute a specific task. The simulation results are shown.

  • PDF

Dynamic Manipulability for Cooperating Multiple Robot Systems (공동 작업하는 다중 로봇 시스템의 동적 조작도)

  • 심형원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.930-939
    • /
    • 2004
  • In this paper, both dynamic constraints and kinematic constraints are considered for the analysis of manipulability of robotic systems comprised of multiple cooperating arms. Given bounds on the torques of each Joint actuator for every robot, the purpose of this study is to drive the bounds of task-space acceleration of object carried by the system. Bounds on each joint torque, described as a polytope, is transformed to the task-space acceleration through matrices related with robot dynamics, robot kinematics, object dynamics, grasp conditions, and contact conditions. A series of mathematical manipulations including the procedure calculating minimum infinite-norm solution of linear equation is applied to get the reachable acceleration bounds from given actuator dynamic constrains. Several examples including two robot systems as well as three robot system are shown with the assumptions of complete-constraint contact model(or' very soft contact') and insufficient or proper degree of freedom robot.

Optimal load distribution for two cooperating robot arms using force ellipsoid

  • Choi, Myoung-Hwan;Cho, Hye-Kyung;Lee, Bum-Hee;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1790-1795
    • /
    • 1991
  • The optimal load distribution for two cooperating robots is studied in this paper, and a new solution approach utilizing force ellipsoid is proposed. The load distribution problem is formulated as a nonlinear optimization problem with a quadratic cost function. The limit on instantaneous power is considered in the problem formulation as the joint torque constraints. The optimal solution minimizing energy consumption is obtained using the concept of force ellipsoid and the nonlinear optimization theory. The force ellipsoid provides a useful geometrical insight into the load distribution problem. Despite the presence of the joint torque constraints, the optimal solution is obtained almost as a closed form, in which the joint torques are given in terms of a single scalar parameter that can be obtained numerically by solving a scalar equation.

  • PDF