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ABSTRACT

This paper discusses -a force distribution scheme which
minimizes the weighted norm of the forcesftorques applied on
weak points of cooperating multiple robot arms. The scheme is
proposed to avoid the damage or unwanted motion of any weak
point of robots or object stemming from excessive
forces/torques. Since the proposed scheme can be used for
either the joint torque minimization or the exerted force minim-
ization on the object, it can be regarded as a unified force
minimization method for multiple robot amms. The computa-
tional complexity in this scheme is analyzed using the proper-
ties of Jacobian. Simulation of two identical PUMA robots
held an object is carried out to illustrate the proposed scheme.
By the proper choice of the weighting matrix in the perfor-
marnce index, we show that force minimization for a weak point
can be achieved, and that the exerted force minimization on the
objcct can be changed to the joint torque minimization.

NOMENCLATURE

r number of robots

n  number of joints for each robot

! number of weak points for each robot

g;  gencralized coordinates of the ith robot in R”

g  extended generalized coordinates for all robots in R™, ¢°
=14q1.q% .4

T, joint torque vector for g; in R”

t

T extended joint torque vector for ¢ in R™
=TT, T

X, position vector of an object with respect to the world
coordinates in R®

F, force vector of an object in R®

x,; position vector of the ith end-effector in R 6

x,  extended position vector of all end-effectors in RY, x! =

xe‘] »lez’ T ,X;r

F,; force vector for x,; in RS

F, extended force vector for x, in RS |
Fi=[Fl Rl ]

x,;; position vector of the jth weak point on the ith robot in
RS

x,; extended position vector of the weak points for the ith
robot in RY, xb = | xhiy s Xhiz s - 2 Xei

x,  extended position vector of all weak points in RO xi =

Xt 2 X2 s Xy
F,;; weak point force vector for x,,;; in R®
F,; extended weak point force vector for x, ,
Fli={Fiy Fup, - Fly | inR®

F, extended force vector for x, in R®

=Ry Fla R
J,i  Jacobian matrix between the end-effector and joint for the
ith robot in RS

J, extended Jacobian matrix consisting of diagonal subma-
trices of J,; in R7™

Jacobian matrix between the end-effector and the jth
weak point on the ith robot in R8¢

J extended Jacobian matrix consisting of submatrices of J;;
in R6r1><67

J;  Jacobian matrix between the object and the ith c¢nd
effector in R

J  extended Jacobian matrix in
[jlyjz, 'jr}

R 6x6r , j‘ —

R rotation matrix in R >3

T  homogeneous transformation matrix in R+

1. Introduction

Recently, multiple robot amms which provide greater lift-
ing capability, manipulability, and flexibility in automated
manufacturing has been focused. However, the coordination of
multiple robot arms causes many problems such as load distri-
bution, trajectory planning, and tracking control. Among them,
load distribution becomes very important problem, especially,
when multiple robot arms handle a single object simultanc-
ously. The load that imposes on the end-effectors can in gen-
eral be represented by three dimensional forces and torques. If
the equal amount of forceftorque which warrants the desired
motion of the object are genecrated by cooperating multiple
robot arms, the object follows the given trajectory. However,
if the total number of degreces of freedom of multiple robot
arms are greater than six, then the applied joint forces/torques
of each robot for the required motion of the object is not
uniquely determined. Since only 6 independent forces are
required to describe the object motion, the remaining forces
may contribute to generate the internal force which cancel each
other end-effector forces. Therefore, the cancelled forces can
be regarded as redundant forces. The redundancy in forces
may be used to optimize a certain kind of performance criteria.

During recent years, load distribution among muliiple
robot arms has been the subject of considerable research, and



scveral approaches have been suggested. One approach is
based on joint torque minimization[1](2], which minimizes the
norm of joint torques, and it is also equivalent to the least
cnergy consumption. In {1}, computaiion for joint tlorque
minimization involves time consuming matrix multiplications
and inversions. Carignan and Akin{2] proposed a reduced order
form for two planar arms and obtained the optimal torque dis-
tribution using simple equations for rcal time application.
Since their algorithm states in the case of two planar arms with
lwo links only, it is not applicable to general multiple robot
arms. Pittelkau(3] proposed an adaptive scheme of the load dis-
tribution for two robot arms, and the end-cffector forces of two
robot arms are chosen as Ff, =aF, and F,,=(1 - 0)F,
with 0 £ o < 1 respectively, and the norm of joint torques is
minimized by using an adaptive rule of o« Since the end-
cffector forces are assumed to have the same direction with the
required object forces, it does not give true minimum joint
lorques in general. Walker er al[4] suggested a null space vari-
ation scheme, where a null vector is chosen to reduce the
torque requirement. In these joint torque minimization
approaches, the exerted joint torque, i.e, exerted joint energy,
can be minimized. However, the problem stemming from the
excessive exerted forces to the object is still remaining. We

interpret the exerted force as the force excrted on a point which
has 6 components of forces/iorques.

Another approach is based on the exerted cnd-effector
force minimization which prevents the damage of the object as
well as the end-effector holding the object{11[2]I5)(6i(7). A large
amount of exerted forces may be harmful to both the object and
end-effectors. The minimization of exerted forces to the object
Icads 10 an alternative optimal algorithm. Hayati[s] proposed
the weighted exerted end-effector force minimization. In rigid
grasp of an object, the multiplications of a constant matrix to
the desired object force gives the optimal end-effector forces.
And  Zhengll] introduced a scalar parameter o of
Fogo=af, Fh,=(1-o)F, where 0<a<1, and o was
obtained by the minimization of the nomm of F,;. But for real
time application, half or even distribution was proposed,
Hsu(s] proposed a method to choose a weighting matrix in the
performance index of weighted exerted end-effector force
minimization. The weighting matrix was chosen by consider-
ing on the structural characteristics of the object and grip posi-
tion of end-effectors. On the other hands, these approaches,
which minimize exerted end-effector forces on the object, do
not guarantee the minimization of energy to joint torques. And
the consideration of joint torque limits for exerted force minim-
ization is very difficult because the weighting corresponds to
the exerted force, and joint torques are not directly related to
the weighting. Therefore, the joint torques may exceed its
limit. And, if there is a weak or fragile point on the object,
then the tuning of the clements in the weighting matrix for the
particular point is very difficult because the optimized forces
for the end-effectors, not for the weak points.

From the previous works, we observe that there are limi-
tations in both approaches. It is required to find a unified
approach for multiple robot arms, which minimizes the forces
at points of interest. In this context, we define a weak point as
follows : A point on the link of a robot or on the object which
can be damaged structurally due to the excessive force or a
point which may give the unwanted motion due to the joint
torque limits. Therefore, the exerted forces on the weak point
should be reduced enough to avoid unwanted cffects.

In this paper, a force distribution scheme which minim-
izes the weighted norm of forceftorque exerted on weak points
in multiple robot arms is proposed. The maximum allowable
forces on weak points can be chosen as the inverse of diagonal
elements of a weighting matrix. Since joint torque limits arc
the maximum driving torques of joints, these limits are the
maximum allowable forces for the joints. Therefore, the limits
of joint torques for the joints can be generalized by the concept
of the maximum atlowable forces for arbitrary points including
the joints. In this gencralized concept, joint torquc minimiza-
tion can be treated as a subsct of force minimization of the
weak points. In this case, joints become weak points. Also,
exerted force minimization can be solved by treating the end-
effector of each robot as a weak point from the concept of
maximum allowable forces. The proposed scheme, therefore,
generalizes the joint torque minimization problem and/or the
exerted force minimization problem as a force minimization
problem at weak points.

2. Force relationship in a single link

Weak point forces in multiple robot arms can be
represented as a function of the forces exerted from the object
as well as from the robot motion. In this section, we describe
the force relation between two points in a rigid link. In Fig.1,
the origins of two coordinate frames are established at points a
and b, and the coordinate frames are denoted as O, and O,
respectively. A 3x3 submatrix R represents a rotational rela-
tion from the coordinate frame O, to O,. And p is defined as
a 3x1 position vector from the point a to the point b with
respect to the coordinates frame O,. Thercfore the notation p
is different from the conventional 3x1 vector which describes
the position from the origin of coordinates frame O, to O,.
F, is an excrting force from an extemal object 1o the point &
with respect to the coordinate frame O,. And F, is an induced
force to the point a with respect to the coordinates frame O, .

If a point to be considered, a, does not a contact with
other objects but is an arbitrary point on a link, we can not
generally define the force at that point, since the force is distri-
buted as the form of the density of force. In a rigid link or an
object, therefore, we consider the smallest arca crossing the
point to be considered. If we interpret the force integrated on
the smallest area as the force at that point[g], the link can be
divided into two sublinks as shown in Fig.1.

Sublink 1

Center of msg
for weak point I1

Fig. 1. Force relation between arbitrary two points.

For further discussion, we define a weak link as a link
which has a weak point. Then, a weak sublink is defined as a
sublink between the weak point a and the contact point.
Assume that the point ¢ in Fig.1 is a weak point. Then the
force relation for sublink 1 can be expressed by
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Fo=Jup Fp + Fy )

where J,, is Jacobian matrix for two points @ and &, and it
can be obtained using coordinate transformation matrix(11].

R 0
Jao = |pr R
where P is defined as follows:
0 —P: Py
P = P: 0 ~Px
-py b O

which satisfies the following properties:
(PR =p x(Rv) and P' =-P

And Fy; is the force induced by the motion of the link, and
can be described as

myoy

Fi,= .
Lo sy xmyo) +Iiw +w x 1w

and m, is the total mass of sublink 1, and s is the position
vector from the weak point to the center of mass for sublink 1
with respect to the coordinate frame O,. «; is the acceleration
vector of the center of mass point for sublink 1, and can be
obtained from the acccleration vector of the center of mass
point of the original link. The angular velocity and angular
acceleration w, and w, are the same as w and w of the origi-
nal link. To calculate Fy,, m, , p; and /, must be properly
predetermined from the structure of the original link.

3. Force minimization at weak points

The weak point forces can be divided into two types of
forces: the end-effector forces and the forces induced by robot
motion. The forces due to robot motion can be determined if a
trajectory for the object is given. The remaining unknown
forces are due to exerted force from the end-effectors. If we
can determine the force induced by robot motion from the tra-
jectory, the weak point force is a function of the end-effector
force only.

In multiple robot arms, because of the redundancy, there
exist many solutions for end-effector forces which generate the
desired object forces. Therefore, by the proper choice of end-
effector forces satisfying the constraints, the weak point forces
can be reduced properly and protected from the excessive
forces.

At weak points, weak point forces are described by
F,, =JF, +F; where F, is a 6rlx1 force vector induced from
robot motion. In this case, the force minimization problem can
be formulated as follows:
Problem I

Determine the weak point forces F,, to minimize the qua-
dratic performance index
1

2
subject to F, =S F, and F, =JF, +F,

FLQF, @

Although the weak point forces F, is minimized, the
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force is not need to know because the required forces to controt
or to simulate are joint torques or end-effector forces. In this
paper, thercfore, we will solve the problem as the end-effector
forces which minimizes the performance index.

To solve the problem, we introduce a Lagrange multiplier,
A, and augment the constraints F, = J F, 1o the original prob-
lem. Then, the force minimization problem can be reformu-
lated as unconstrained optimization problem.
Problem 11

Determine the end-effector forces F, to minimize the qua-
dratic performance index

S FLIHFD Q UF 4R A (F, T F,) )

J' is the transpose of 67x6r! Jacobian matrix and expressed as
follows:

J=
Jh TaY] 0 0 0]
0 0 JYy Ty 0 0
z Do : : @
0 U 0 I Jh

where J; is the Jacobian matrix, which describes the force rela-
tionship between the jth weak point and the end-effector of the
ith robot. And the weighting matrix Q in (3) is a 6rix6r!
weighting matrix for weak points as follows:

g =diag(@yy, - ,Qyu.Qun. -
1erv 'er]v
Qij =diag({Qiitns - - {Qij)es]

where Q;; are the weighting matrix corresponding to the weak
point force F,;;.

Qo (5)

In this formulation, the weak point forces are minimized
by a weighted minimization method. The weighting matrix Q
of (3) gives the relative weakness among weak points. For
instance, if the jth weak point on the ith robot is relatively
weaker than the others, then the forces exerted on the weakest
point can be reduced by increasing the norm of the correspond-
ing submatrix @;;. Since the forces exerted on a weak point
are composed of six independent terms of forces and torques,
the weighting submatrices Q;; corresponding to the jth weak
point of the ith robot can be represented by a 6 x 6 diagonal
matrix if the cross weighting terms are ignored. Also, the cle-
ments of Q;; can be assigned depending on the relative weak-
ness among force directions of the weak point. For example, if
x-direction force for the weak point, ie. f i 18 relatively
weaker than y-direction force, f ijy» then we can choose a large
value for {Q;; 11, and small value for {Qij}22. Conversely, if
the force direction of a weak point along partial coordinate is
relatively stronger than the others, then the value of the weight-
ing matrix corresponding to that direction can be reduced.

The end-effector force which minimizes the performance
index becomes

Fo=('Quy' P du gy 'yF, +
e Gyt it iyt eyt g F,
-J'on I QrF,

(6

The above equation seems to be very complex because



the inversion of (/' @ J)! are required. However, if we make
some assumptions, (6) can be solved.

For r tobots and ! weak points for each robot, the calcu-
lation of (J' QJ y! requires a matrix inversion of dimension
6rix6rl. For the case of two cooperating robot arms which
have eight weak points “for each robot, the inversion of a 96x96
matrix is required.

In this case, the matrix inversion can be simplified if the
characteristics of a robot is used. In (J*QJ )", J and Q arc
defined in (4) and (5) respectively. To calculate the matrix
J'Q J)"’, we consider the properties of Jij which are subma-
trices of /. By the definition, J;; can be described as follows:

R0
Ji=1pr R

where R and P are submatrices of the coordinate transforma-
tion matrix, and the subscripts i and j of R and P are ignored
for brevity. Using the orthonormmal properties of a rotational
matrix, R~ = R, the inversion becomes

‘R0
Jil= =
i _ R-IP R—l

Also, the transpose and its inverse for J{j are defined respec-

tively as follows:
. R' o |R PR
%i=1o Ti=lo r

Inverse of the Jacobian matrix, JJ‘, can be obtained by simple
operations such as the transposc of submatrices. Also, if Qy;
arc assumecd as diagonal matrices, the weighting matrix Q
becomes a 6rlx6r! diagonal matrix.

@]

R 0

PRY R,] ®

(PRY
. ®)

RI

After simple operations for submatrices, J* Q J becomes

! !
J'QJ =diag TIi Quidvi » TS5 Qoidai
il i=1

!
SRR WA o B Y
i=1

1,

Since this matrix is composed of block diagonal subma-
trices, the inverse of J' Q J can be determined as follows:

i 1
J'QJIY =diag[TI1: 0T T Qu )™ (1)

i=1 i=1

i
SRR W AT o N Ay

i=1

In the case of I = 1, i.e. one weak point for each robot,
then

!
(X750 7, =iyt =00 (12)
j=1

where Q,-j‘ are also diagonal matrices, and the diagonal ele-
ments of Q,-,-‘1 are replaced by the inverse of the diagonal ele-
ments of Q,j. J,-JTl and J,-]‘ can be obtained from (8) and (9).
If I#1, i.e. multiple weak points for each robot, then the inver-
sion of a 6x6 matrix is required r times to calculate (J' O Jy!
as much as the number of robots.

The 6 x 6 matrix inversion for (J (J* @ J)"'J*)™! can be
done similarly as follows:
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r {
G eIy Y T (X0, 0 T (13)

izl j=1

The total number of the matrix inversion to calculate F,
can be summarized as follows:

if I = 1, then only one 6 X 6 matrix inversion is requirec.
if I # 1, then (r+1) times

4. Simulation of force distribution for two PUMAS60 robots

In this section, it is shown that the proposed force distri-
bution scheme can be used in joint torque minimization or
exerted force minimization as well as weak point force minimi-
zation. First, the exerted force minimization turned into the
joint torque minimization by the variation of weighting values.
Next, the weak point force minimization is carried out to show
the force reduction when the paticular joint or paticular point in
link of each robot are defined as the weak points.

As shown in Fig.2, environments for simulations, we
show that pertaining to two identical PUMA 560 robots are
summarized. the base coordinates of robot 1 and robot 2 are
established at 0, and Q,,, respectively. The base coordinates
of ecach robot and world coordinates, O,,, are placed with dis-
tance 0.75m, and the relation among them are represented by
homogenous transformation matrices as follows:

100 O -1 0 0 0
010 =075 0 -1 0 075
YTy = » "Ter =
001 0 0 01 0O
000 1 0O 0 0 1
2p1 ,
w 22
Ow Oy,
LT 1N

Fig. 2. Coordinate systems of robots and world

And the rigid object held by two robots is chosen as the
hexahedronal bar. It is assumed that the object is uniformly
distributed and its length, depth, and width are 0.4m, 0.1m,
and 0.1m, respectively. The total mass of the object is
assumed to be 12Kg. And the inertia matrix of the object for
the center of mass is given by

0.68 -0.12 -0.03
-0.12 008 -0.12

—0.03 -0.12 0.68
And the grip position of both robots are expressed as the
following matrices with respect to the object coordinates.

I=

-100 0 100 0}

0 01 -02 00 -102
°T,y = °T,, =
151010 0| ‘27010 0

0 00 1 0060 1



Let the initial and final positions of the center of mass of
the object be

x5 =(0,0,-0.4,0,0,0) and x,; =(0,0,04,0,0,0

where the robots are moving along z-direction with respect to
world coordinates in 2sec as shown in Fig.2. The desired tra-
jectory of the center of mass of the object with respect to the
world coordinates can be obtained by (14)-(17).

Xoe = Xof — X (14)
I,
%, =20 + 22 (1 = Lsin( 2y s
f
%, =228 (1 - cos( 2 y) (16)
t tf
. X
%, =202 in( 2 an
i i

where x,, is the total distance from the initial to the final posi-
tion of the object, and #; is the total traveling time under the
assumption £y = 0.

Using the trajectory of the object obtained through (14)-
(17), the joint trajectories of robots are obtained in order to
determine the forces, F;, due to robots motion. The object tra-
jectory and the required load force, F,, are illustrated in Figs.
3.
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~ ~_/'
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b 5 1 15 2
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Fig. 3. Trajectories of the object.

A. Joint force minimization vs exerted force minimization
Using the concept of the weak point force, we show that
the exerted force minimization and the joint torque minimiza-
tion can be treated as the same procedures. Weak points are
chosen as each joint and each end-effector, and the joint coor-
dinates and end-effector coordinates become the weak point
coordinates. Then, seven weak points are assigned to each
robot. Initially, the diagonal elements of the weighting matrix
corresponding to the end-effectors are set to large values. And
the other diagonal elements corresponding to joints are set to
small values. In this situation, the weak point force minimiza-
tion problem is nearly equivalent to an exerted force minimiza-
tion problem. As the weighting values for joints increase, and
those for the end-effectors decrease, the weak point force
minimization problem becomes a joint torque minimization.
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Fig. 4. Joint torque variation of joint 2
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Fig. 5. Exerted force variation of x -axis of the end-effector
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Fig. 6. The variation of performance index of T'7.

In Fig. 4, joint torque of the second joint of the first robot
is illustrated for the variation of diagonal values of the weight-
ing matrix. Since the robots are assumed to have identical
structures and to grasp the object symmetrically, the joint
torques for each robot are equal if same weighting values are
assigned. When the weighting values correspond to joint are
0.01, and the weighting values correspond to the end-effectors
are 100.0, the weak point force minimization is nearly equal to
exerted force minimization. On the other hand, in the case of
0.01 for the end-effectors and 100.0 for joints, it is nearly equal
to the joint torque minimization. By adjusting the weighting
values, the curve resulted from exerted force minimization
transfers to the curve of joint torque minimization, and the
magnitude of joint torques are reduced. In Fig. 5, the excrted
force variation of x-axis of the end-effector is illustrated.
When the weighting matrix is adjusted, we notice that the mag-



nitude of the exerted force increase as the magnitude of the
joint torques are reduced. In this cxample, all forces except
fey generate internal force. Therefore, f,, is cancelled each
other when the exerted force is minimized. In Fig. 6, PL =
' 7 is illustrated for the resullant joint torque. As shown in
these figures, the weak point force minimization method can be
regarded as the gencralized approach which include the joint
torque minimization and the cxerted force minimization for
end-cffectors.

B. Weak point force minimization for the specific joint.

Assume that a joint is weaker than the other joints. Let

the fourth joint ( wrist joint ) be the weakest point. To show
the force reduction at the weak point, we apply the weak point

force minimization approach in this example. The wcak points
are chosen as same as in the first example. Let the weighting
values be chosen as 1.0 for all diagonal elements except fy3
terms of both robots. And the weighting values corresponding
1o the f, are varied from 1.0 to 5.0. Fig. 7 shows that the
force reduction, and Fig. 9 shows the force variation of the
other joint to reduce the force of the weakest point, fy3, is

done significantly.
x10%)

2

Force [N}

Time [sec]
Fig. 7. Trends of f4 according to the variation of weighting.
5 0x0%)

2

Torque [Nm]

) . Time [sec]
Fig. 8. Variation of n,4 to reduce the weakest point force f3

5. Conclusion

A force distribution scheme which minimizes the
weighted norm of force/torque excried on the weak points in
multiple robot arms is proposed. There exist two method of a
joint torque minimization and an exerted force minimization for
load distribution, and we propose the generalized method as
one-combined approach using the concept of a weak point. By
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choosing the weak points to the joint coordinates for all robots
and propcfly assigning the weighting, joint torque minimization
can be achicved. Also, by defining the end-effectors for all
robots as the weak points, the excrted force minimization for an
object can be achicved. The computaliona! complexity of this
algorithm is significantly reduced, which seems to prevent from
real time application, using the properties of the Jacobizn
matrix. Simulation results of two identical FUMA robot are
given to illustrate the proposed scheme. From the variation of
the weighting, transfer action from cxerted force minimization
on the object to joint torque minimization is simulated to show
that the proposcd algorithm is generalized approach for force
minimization. And weak point force minimization for a point,
which is weak especially, is simulated to show the force reduc-
tion to avoid a damage. From the comparison of the exerted
force minimization and joint torque minimization, this algo-
rithm reveals the feasibility and applicability.
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