• Title/Summary/Keyword: two antigens

Search Result 182, Processing Time 0.024 seconds

Investigation of Immune Biomarkers Using Subcutaneous Model of M. tuberculosis Infection in BALB/c Mice: A Preliminary Report

  • Husain, Aliabbas A.;Daginawala, Hatim F.;Warke, Shubangi R.;Kalorey, Devanand R.;Kurkure, Nitin V.;Purohit, Hemant J.;Taori, Girdhar M.;Kashyap, Rajpal S.
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.83-90
    • /
    • 2015
  • Evaluation and screening of vaccines against tuberculosis depends on development of proper cost effective disease models along with identification of different immune markers that can be used as surrogate endpoints of protection in preclinical and clinical studies. The objective of the present study was therefore evaluation of subcutaneous model of M.tuberculosis infection along with investigation of different immune biomarkers of tuberculosis infection in BALB/c mice. Groups of mice were infected subcutaneously with two different doses : high ($2{\times}10^6CFU$) and low doses ($2{\times}10^2CFU$) of M.tuberculosis and immune markers including humoral and cellular markers were evaluated 30 days post M.tuberculosis infections. Based on results, we found that high dose of subcutaneous infection produced chronic disease with significant (p<0.001) production of immune markers of infection like $IFN{\gamma}$, heat shock antigens (65, 71) and antibody titres against panel of M.tuberculosis antigens (ESAT-6, CFP-10, Ag85B, 45kDa, GroES, Hsp-16) all of which correlated with high bacterial burden in lungs and spleen. To conclude high dose of subcutaneous infection produces chronic TB infection in mice and can be used as convenient alternative to aerosol models in resource limited settings. Moreover assessment of immune markers namely mycobacterial antigens and antibodies can provide us valuable insights on modulation of immune response post infection. However further investigations along with optimization of study protocols are needed to justify the outcome of present study and establish such markers as surrogate endpoints of vaccine protection in preclinical and clinical studies in future.

AN EXPERIMENTAL STUDY ON TUMOR SPECIFIC ANTIGENS OF RAT SALIVARY GLAND TUMOR INDUCED BY 7, 12-DIMETHYLBENZ(a) ANTHRACENE(DMBA) (7,12-Dimethylbenz(a) anthracene(DMBA)에 의해 유도되는 백서 타액선종양에서의 종양특이항원에 대한 연구)

  • Kim, Jee-Hack
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.11 no.1
    • /
    • pp.203-220
    • /
    • 1989
  • Ever since the expression of new tumor-specific antigens was reported during malignant transformation, studies on separation, purification and characterization of these proteins have been so activated recently. Following experiment was performed to observe tumor-specific antigens by implanting DMBA pellet into submaxillary gland of rat for inducing salivary gland tumor. After dividing 280 rats into 2 groups, in control group, sham operation was performed on right submaxillary gland and, in experimental group, DMBA pellet (5mg) was implanted into right submaxillary gland. Then proteins from excised submaxillary gland by killing 10 rats every two weeks for 28 weeks were extracted with 3M KCl, and SDS-PAGE and PAS-staining were carried out for biochemical examination. The obtained results were summarized as follows; 1) At 12th week since implantation of DMBA pellet, tumor mass formation was inspected. And dysplasia at 6th week and invasive epidermoid carcinoma at 10th week were observed by microscope. 2) In control group, the weight ratio of both submaxillary glands had no any change, however, in experimental group, the ratio was increased remarkably. And at 28th week after DMBA implantation, there was more than 15 times of differences in weight between control and experimental group. 3) There was no DMBA remnant after 22nd experimental week. 4) In the SDS-PAGE, high molecular protein bands (more than 100 kd) were appeared much, and new prominent protein bands (66, 48, 41.5, 39, 37, 37.5 kd) were appeared after 4th week since DMBA implantation. However, 38, 27, 22kd protein bands were disappeared. 5) In PAS-staining, high molecular proteins were proteins were all glycoproteins and 37.5kd protein was proved as to be glycoprotein. And 38kd glycoprotein was disappeared after 4th week since DMBA implantation.

  • PDF

Immunochemical Studies for the Characterization of Purified $(Na^+,\;K^+)-ATPase$ and Its Subunits with a Special Reference of Their Effect on Monovalent Cation Transport in Reconstituted $(Na^+,\;K^+)-ATPase$ Vesicles

  • Rhee, H.M.;Hokin, L.E.
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.35-49
    • /
    • 1990
  • A highly purified $(Na^+,\;K^+)-ATPase$ from the rectal gland of Squalus acanthias and from the electric organ of Electrophorus electricus has been used to raise antibodies in rabbits. The 97,000 dalton catalytic subunit and glycoprotein derived from the rectal gland of spiny shark were also used as antigens. The two $(Na^+,\;K^+)-ATPase$ holoenzymes and the two shark subunits were antigenic. In Ouchterlony double diffusion experiments, these antibodies formed precipitation bands with their antigens. Antibodies prepared against the two subunits of shark holoenzyme also formed precipitation bands with their antigens and shark holoenzyme, but not with eel holoenzyme. These observations are in good agreement with inhibitory effect of these antibodies on the catalytic activity of $(Na^+,\;K^+)-ATPase$ both from the shark and the eel, since there is very little cross-reaction between the shark anticatalytic subunit antibodies and the eel holoenzyme. The maximum antibodies titer of the anticatalytic subunit antibodies is found to be 6 weeks after the initial single exposure to this antigen. Multiple injections of the antigen increased the antibody titer. However, the time required to produce the maximum antibody titer was approximately the same. These antibodies also inhibit catalytic activity of $(Na^+,\;K^+)-ATPase$ vesicles reconstituted by a slow dialysis of cholate after solubilization of the enzyme in a presonicated mixture of cholate and phospholipid. In these reconstituted $(Na^+,\;K^+)-ATPase$ vesicles, effects of these antibodies on the fluxes of $Na^+$, $Rb^+$, and $K^+$ were investigated. Control or preimmune serum had no effect on the influx of $^{22}Na^+$ or the efflux of $^{86}Rb^+$. Immunized sera against the shark $(Na^+,\;K^+)-ATPase$ holoenzyme, its glycoprotein or catalytic subunit did inhibit the influx of $^{22}Na^+$ and the efflux of $^{86}Rb^+$. It was also demonstrated that these antibodies inhibit the coupled counter-transport of $Na^+$ and $K^+$ as studied by means of dual labeling experiments. However, this inhibitory effect of the antibodies on transport of ions in the $(Na^+,\;K^+)-ATPase$ vesicles is manifested only on the portion of energy and temperature dependent alkali metal fluxes, not on the portion of ATP and ouabain insensitive ion movement. Simultaneous determination of effects of the antibodies on ion fluxes and vesicular catalytic activity indicates that an inhibition of active ion transport in reconstituted $(Na^+,\;K^+)-ATPase$ vesicles appears to be due to the inhibitory action of the antibodies on the enzymatic activity of $(Na^+,\;K^+)-ATPase$ molecules incorporated in the vesicles. These findings that the inhibitory effects of the antibodies specific to $(Na^+,\;K^+)-ATPase$ or to its subunits on ATP and temperature sensitive monovalent cation transport in parallel with the inhibitory effect of vesicular catalytic activity by these antibodies provide direct evidence that $(Na^+,\;K^+)-ATPase$ is the molecular machinery of active cation transport in this reconstituted $(Na^+,\;K^+)-ATPase$ vesicular system.

  • PDF

Phylogenetic Analysis of Hepatitis B Virus Genome Isolated from Korean Patient Serum

  • Kim, Seon-Young;Kang, Hyen-Sam;Kim, Yeon-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.823-828
    • /
    • 2000
  • The complete nucleotide sequence of hepatitis B virus DNA isolated from Korean patient serum was determined and characterized, and its phylogenetic relation was then investigated. The viral genome was 3,215 base pairs long and included four well known open reading frames (i.e. surface antigens, core antigens, X protein and DNA polymerase). The sequence of the surface antigen showed that the HBV genome under investigation, designated HBV 315, was characteristic of subtype adr. A phylogenetic analysis using the total genome sequence revealed that HBV315 was grouped into genomic group C together with isolates from Japan, China, Thailand, Polynesia, and New Caledonia. The mean percent similarity between HBV315 and other HBV isolates in genomic group C was 97.25%, and that with other genomic groups ranged from 86.16% to 91.25%. The predicted amino acid sequences of HBV315 were compared with two closely related subtype adr isolates, M38636 and D12980. The results showed that the X gene product was identical in the three strains, while there were significant amino acid sequence differences between HBV315 and M38636 in the Pre-S1 and Pre-S2 regions.

  • PDF

Development of mRNA Vaccines/Therapeutics and Their Delivery System

  • Sora Son;Kyuri Lee
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • The rapid development of mRNA vaccines has contributed to the management of the current coronavirus disease 2019 (COVID-19) pandemic, suggesting that this technology may be used to manage future outbreaks of infectious diseases. Because the antigens targeted by mRNA vaccines can be easily altered by simply changing the sequence present in the coding region of mRNA structures, it is more appropriate to develop vaccines, especially during rapidly developing outbreaks of infectious diseases. In addition to allowing rapid development, mRNA vaccines have great potential in inducing successful antigen-specific immunity by expressing target antigens in cells and simultaneously triggering immune responses. Indeed, the two COVID-19 mRNA vaccines approved by the U.S. Food and Drug Administration have shown significant efficacy in preventing infections. The ability of mRNAs to produce target proteins that are defective in specific diseases has enabled the development of options to treat intractable diseases. Clinical applications of mRNA vaccines/therapeutics require strategies to safely deliver the RNA molecules into targeted cells. The present review summarizes current knowledge about mRNA vaccines/ therapeutics, their clinical applications, and their delivery strategies.

Vibration Optimization Using Immune-GA Algorithm (면역-유전알고리즘을 이용한 진동최적화)

  • 최병근;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.273-279
    • /
    • 1998
  • An immune system has powerful abilities such as memory, recognition and learning to respond to invading antigens, and is applied to many engineering algorithm recently. In this paper, the combined optimization algorithm is proposed for multi-optimization problem by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed optimization algorithm is identified by using two multi-peak functions which have many local optimums and optimization of the unbalance response function for rotor model.

  • PDF

Salmonella vector induces protective immunity against Lawsonia and Salmonella in murine model using prokaryotic expression system

  • Sungwoo Park;Eunseok Cho;Amal Senevirathne;Hak-Jae Chung;Seungmin Ha;Chae-Hyun Kim;Seogjin Kang;John Hwa Lee
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.4.1-4.14
    • /
    • 2024
  • Background: Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. Objectives: In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. Methods: We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. Results: Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. Conclusions: Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.

Advancements in Bispecific Antibody Development and Research Trends (이중특이성 항체의 개발 및 최신동향)

  • Yong Hwan Choi;Ha Seung Song;Su Keun Lee;Chi Hun Song;Ji Hoe Kim;Kyung Ho Han
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.223-242
    • /
    • 2023
  • In contrast to chemical medicines, biopharmaceuticals exhibit reduced side effects and enhanced therapeutic efficacy. Antibody therapies have significantly advanced since the first monoclonal antibody's approval in 1986, now dominating the pharmaceutical market with seven out of the top 10 biopharmaceuticals. The bispecific antibody has a distinct capability to bind to two antigens simultaneously, unlike conventional monoclonal antibodies that target just one antigen. The notion of bispecific antibodies was initially introduced in 1960, and by 1997, the first symmetrical form of bispecific antibody was successfully produced. Subsequently, extensive research has been conducted on bispecific antibodies, leading to a significant milestone in 2014 when blinatumomab became the first FDA-approved drug to treat acute lymphocytic leukemia. Despite having a relatively shorter history compared to monoclonal antibodies, bispecific antibodies have proven their potential by targeting two antigens simultaneously, thereby rendering them highly effective as anti-cancer drugs. As of 2023, there are a total of 11 globally approved bispecific antibodies, with six of them receiving approval from FDA. In light of the rapidly expanding market for bispecific antibodies, this review article comprehensively explores the attributes, historical background, applications, and market status of bispecific antibodies. Additionally, it sheds light on the present trends in bispecific antibody development, drawing insights from 96 research articles and 105 clinical studies. Excitingly, we anticipate further progress in the development of bispecific antibodies and clinical trials on a global scale, with the aspiration of utilizing them not only in cancer treatment but also for addressing diverse medical conditions.

Proteome identification of common immunological proteins of two nematode parasites

  • Shin Ae Kang;Hak Sun Yu
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.3
    • /
    • pp.342-350
    • /
    • 2024
  • Although helminth parasites have different life cycles, their hosts share similar immune responses involving Th2 cell-type. Here, we extracted proteins from the larvae of Anisakis simplex complex and Trichinella spiralis to identify common and specific antigens (or allergens) associated with the Th2 immune response. We performed two-dimensional electrophoresis analysis and Matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF) experiments. We found 13 potentially immunogenic proteins, which included 5 spots specific to T. spiralis and 8 common to T. spiralis and A. simplex, by tandem mass spectrometry. These molecules were identified structurally as actin, tropomyosin, col cuticle N domain-containing protein, and heat shock proteins. We also identified molecules related to parasite-host immune modulation and interactions. Our results may contribute to reveal potential roles of immunological proteins in parasite-derived immune modulation.

Pulmonary Fungal Infection in Patients with Healed Tuberculosis or Other Underlying Diseases (폐결핵 또는 기타 질환환자에 있어서의 폐진균증에 관한 연구)

  • Kim Sang Jae;Hong Young Pyo;Kim Sung Chin
    • Korean Journal of Microbiology
    • /
    • v.19 no.3
    • /
    • pp.142-152
    • /
    • 1981
  • One hundred and thirteen healed pulmonary tuberculosis patients and 11 patients with other underlying diseases were studied for evidence of pulmonary fungal infection because of persisting hemoptysis or chronic cough. Rediological, mycological and serological investigations revealed that 54 out of 124 patients were evidently infected with one or more species of fungi. A. fumigatus was isolated from 4 out of 70 patients whose sera did not react with antigens from this fungus, while it was isolated from 43 out of 47 serological reactors to this fungus. Chest radiography showed a distinct fungus ball in a cyst of one patient and in a preformed cavity in the lung of 17 healed tuberculosis patients and two other patients. The latter two patients were infected with A.flavus. Two patients, who were under the long period of immunosuppressive therapy, apparently succumbed to invasive aspergillosia due to A.fumigatus. A single or dual infection with A. flavus, A. nidulans, A.nidulans var. latus, C. albicans, and P. boydii were noticed in some patients without mycetomal shadow on chest radiographs. Young mycelial extract (ME) of A.fumigatus detected antibody in 95.8 percent of the sera from patients infected with this fungus, while it was isolated from 43 out of 47 serological reactors to this fungus. Chest radiography showed a distinct fungus ball in a cyst of one patient and in a performed cavity in the lung of 17 healed tuberculosis patients and two other patients. The latter two patients were infected with A. flavus. Two patients, who were under the long period of immunosuppressive therapy, apparently succumbed to invasive aspergillosis due to A.fumigatus. A single or dual infection with A. flavus, A. nidulans, A. niduans var. latus, C. albicans, and P. boydii were noticed in some patients without mycetomal shadow on chest radiographs. Young mycelial extract (ME) of A.fumigatus detected antibody in 95.8 percent of the sera from patients infected with this fungus, while the commercial culture filtrate antigen (GL) yielded 78.7 per cent positive result. Culture filtrate antigen, however, was comparable with ME. There was no single antigen with which all the serum specimens reacted. Fractionation of ME resulted in a loss of some activity although it excluded substances that reacted with C-reactive protein in a loss of some activity although it excluded substances that reacted with C-reactive protein. Most reactive and specific precipitinogens distributed in the fraction (FB) which was precipitable at 75 percent saturation with ammonium sulfate and eluted in a second peak in order from gel-filtration and which contained mostly proteinic components. Glycoproteins or polysaccharides rich fractions (FA and ASI) were relatively less effective in detecting antibody. Demonstration of antibody in the serum from patients using a battery of fungal antigens and of etiologically related fungi from clinical specimens are very useful laboratory procedures for the diagnosis of pulmonary fungal infection which is a common complication of tuberculosis.

  • PDF