DOI QR코드

DOI QR Code

Investigation of Immune Biomarkers Using Subcutaneous Model of M. tuberculosis Infection in BALB/c Mice: A Preliminary Report

  • Husain, Aliabbas A. (Biochemistry Research Laboratory, Central India Institute of Medical Sciences) ;
  • Daginawala, Hatim F. (Biochemistry Research Laboratory, Central India Institute of Medical Sciences) ;
  • Warke, Shubangi R. (Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College) ;
  • Kalorey, Devanand R. (Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College) ;
  • Kurkure, Nitin V. (Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College) ;
  • Purohit, Hemant J. (Environmental Genomic Unit, National Environmental Engineering Research Institute (NEERI), CSIR) ;
  • Taori, Girdhar M. (Biochemistry Research Laboratory, Central India Institute of Medical Sciences) ;
  • Kashyap, Rajpal S. (Biochemistry Research Laboratory, Central India Institute of Medical Sciences)
  • Received : 2014.12.18
  • Accepted : 2015.02.06
  • Published : 2015.04.30

Abstract

Evaluation and screening of vaccines against tuberculosis depends on development of proper cost effective disease models along with identification of different immune markers that can be used as surrogate endpoints of protection in preclinical and clinical studies. The objective of the present study was therefore evaluation of subcutaneous model of M.tuberculosis infection along with investigation of different immune biomarkers of tuberculosis infection in BALB/c mice. Groups of mice were infected subcutaneously with two different doses : high ($2{\times}10^6CFU$) and low doses ($2{\times}10^2CFU$) of M.tuberculosis and immune markers including humoral and cellular markers were evaluated 30 days post M.tuberculosis infections. Based on results, we found that high dose of subcutaneous infection produced chronic disease with significant (p<0.001) production of immune markers of infection like $IFN{\gamma}$, heat shock antigens (65, 71) and antibody titres against panel of M.tuberculosis antigens (ESAT-6, CFP-10, Ag85B, 45kDa, GroES, Hsp-16) all of which correlated with high bacterial burden in lungs and spleen. To conclude high dose of subcutaneous infection produces chronic TB infection in mice and can be used as convenient alternative to aerosol models in resource limited settings. Moreover assessment of immune markers namely mycobacterial antigens and antibodies can provide us valuable insights on modulation of immune response post infection. However further investigations along with optimization of study protocols are needed to justify the outcome of present study and establish such markers as surrogate endpoints of vaccine protection in preclinical and clinical studies in future.

Keywords

References

  1. Kashyap, R. S., A. R. Nayak, A. A. Husain, H. M. Gaherwar, H. J. Purohit, G. M. Taori and H. F. Daginawala. 2013. Tuberculosis in India: the continuing challenge. Curr. Sci. 105: 597-606.
  2. Husain, A. A., R. S. Kashyap, D. R. Kalorey, S. R. Warke, H. J. Purohit, G. M. Taori, and H. F. Daginawala. 2011. Effect of repeat dose of BCG vaccination on humoral response in mice model. Indian J. Exp. Biol. 49: 7-10.
  3. Parida, S. K., and S. H. Kaufmann. 2010. Novel tuberculosis vaccines on the horizon. Curr. Opin. Immunol. 22: 374-384. https://doi.org/10.1016/j.coi.2010.04.006
  4. Hoft, D. F. 2008. Tuberculosis vaccine development: goals, immunological design, and evaluation. Lancet 372: 164-175. https://doi.org/10.1016/S0140-6736(08)61036-3
  5. Morais, F. D., R. S. Rosada, M. O. Paula, P. F. Wowk, L. H. Franco, E. G. Soares, C. L. Silva, and V. L. peron Bonato. 2010. Experimental tuberculosis: designing a better model to test vaccines against tuberculosis. Tuberculosis (Edinb.) 90: 135-142. https://doi.org/10.1016/j.tube.2010.01.005
  6. Sugawara, I., T. Udagawa, T. Aoki, and S. Mizuno. 2009. Establishment of a guinea pig model of latent tuberculosis with GFP-introduced Mycobacterium tuberculosis. Tohoku J. Exp. Med. 219: 257-262. https://doi.org/10.1620/tjem.219.257
  7. Srivastava, S., A. Ayyagari, T. N. Dhole, N. Krishnani, K. K. Nyati, and S. K. Dwivedi. 2008. Progression of chronic pulmonary tuberculosis in mice intravenously infected with ethambutol resistant Mycobacterium tuberculosis. Indian J. Med. Microbiol. 26: 342-348. https://doi.org/10.4103/0255-0857.42124
  8. Fremond, C. M., V. Yeremeev, D. M. Nicolle, M. Jacobs, V. F. Quesniaux, and B. Ryffel. 2004. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J. Clin. Invest. 114: 1790-1799. https://doi.org/10.1172/JCI200421027
  9. Bonanni, D., L. Rindi, N. Lari, and C. Garzelli. 2005. Immunogenicity of mycobacterial PPE44 (Rv2770c) in Mycobacterium bovis BCG-infected mice. J. Med. Microbiol. 54: 443-448. https://doi.org/10.1099/jmm.0.45960-0
  10. Sharpe, S. A., H. McShane, M. J. Dennis, R. J. Basaraba, F. Gleeson, G. Hall, A. McIntyre, K. Gooch, S. Clark, N. E. Beveridge, E. Nuth, A. White, A. Marriott, S. Dowall, A. V. Hill, A. Williams, and P. D. Marsh. 2010. Establishment of an aerosol challenge model of tuberculosis in rhesus macaques and an evaluation of endpoints for vaccine testing. Clin. Vaccine Immunol. 17: 1170-1182. https://doi.org/10.1128/CVI.00079-10
  11. Gupta, U. D. and V. M. Katoch. 2009. Animal models of tuberculosis for vaccine development. Indian J. Med. Res. 129: 11-18.
  12. Flynn, J. L. 2004. Immunology of tuberculosis and implications in vaccine development. Tuberculosis (Edinb.) 84: 93-101. https://doi.org/10.1016/j.tube.2003.08.010
  13. Shekhawat, S. D., R. K Jain, H. M. Gaherwar, H.J. Purohit, G. M. Taori, H. F. Daginawala, and R. S Kashyap. 2014. Heat shock proteins: possible biomarkers in pulmonary and extrapulmonary tuberculosis. Hum. Immunol. 75: 151-158. https://doi.org/10.1016/j.humimm.2013.11.007
  14. Kolibab, K., A. Yang, M. Parra, S. C. Derrick, and S. L. Morris. 2014. Time to detection of Mycobacterium tuberculosis using the MGIT 320 system correlates with colony counting in preclinical testing of new vaccines. Clin. Vaccine Immunol. 21: 453-455. https://doi.org/10.1128/CVI.00742-13
  15. Ottenhoff, T. H., and S. H. Kaufmann. 2012. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog. 8: e1002607. https://doi.org/10.1371/journal.ppat.1002607
  16. Kashyap, R. S., A. R. Nayak, S. Gaikwad, R. K. Jain, H. F. Daginawala, and G. M. Taori. 2013. Biomarkers in pulmonary and extra pulmonary tuberculosis. Proceedings of the International conference on Advances in developing Affordable Invitro molecular Diagnostics. p. 73-86.
  17. Abebe, F., and G. Bjune. 2009. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin. Exp. Immunol. 157: 235-243. https://doi.org/10.1111/j.1365-2249.2009.03967.x
  18. Zuniga, J., D. Torres-Garcia, T. Santos-Mendoza, T. S. Rodriguez-Reyna, J. Granados, and E. J. Yunis. 2012. Cellular and humoral mechanisms involved in the control of tuberculosis. Clin. Dev. Immunol. 2012: 193923.
  19. Kozakiewicz, L., Y. Chen, J. Xu, Y. Wang, K. Dunussi-Joannopoulos, Q. Ou, J. L. Flynn, S. A. Porcelli, W. R. Jacobs, Jr., and J. Chan. 2013. B cells regulate neutrophilia during Mycobacterium tuberculosis infection and BCG vaccination by modulating the interleukin-17 response. PLoS Pathog. 9: e1003472. https://doi.org/10.1371/journal.ppat.1003472
  20. Acosta, A., M. N. Norazmi, R. Hernandez-Pando, N. Alvarez, R. Borrero, J. F. Infante, and M. E. Sarmiento. 2011. The importance of animal models in tuberculosis vaccine development. Malays. J. Med. Sci. 18: 5-12.

Cited by

  1. Heterologous Prime Boost Regimes with N-terminal Peptides of Ag85B Induces Better Protection than Ag85B and BCG in Murine Model of Tuberculosis vol.22, pp.1, 2015, https://doi.org/10.1007/s10989-015-9490-8
  2. Expression pattern of the autophagy related proteins Beclin1 and LC3B in tuberculous wound tissues vol.19, pp.None, 2015, https://doi.org/10.1177/20587392211024808