DOI QR코드

DOI QR Code

Proteome identification of common immunological proteins of two nematode parasites

  • Shin Ae Kang (Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University) ;
  • Hak Sun Yu (Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University)
  • Received : 2024.04.05
  • Accepted : 2024.06.11
  • Published : 2024.08.31

Abstract

Although helminth parasites have different life cycles, their hosts share similar immune responses involving Th2 cell-type. Here, we extracted proteins from the larvae of Anisakis simplex complex and Trichinella spiralis to identify common and specific antigens (or allergens) associated with the Th2 immune response. We performed two-dimensional electrophoresis analysis and Matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF) experiments. We found 13 potentially immunogenic proteins, which included 5 spots specific to T. spiralis and 8 common to T. spiralis and A. simplex, by tandem mass spectrometry. These molecules were identified structurally as actin, tropomyosin, col cuticle N domain-containing protein, and heat shock proteins. We also identified molecules related to parasite-host immune modulation and interactions. Our results may contribute to reveal potential roles of immunological proteins in parasite-derived immune modulation.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol 2016;138(3):666-675. https://doi.org/10.1016/j.jaci.2016.07.007 
  2. McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin Microbiol Rev 2012;25(4):585-608. https://doi.org/10.1128/CMR.05040-11 
  3. Polak I, Stryinski R, Majewska M, Lopienska-Biernat E. Metabolomic analysis reveals a differential adaptation process of the larval stages of Anisakis simplex to the host environment. Front Mol Biosci 2023;10:1233586. https://doi.org/10.3389/fmolb.2023.1233586 
  4. Diaz JH, Warren RJ, Oster MJ. The disease ecology, epidemiology, clinical manifestations, and management of trichinellosis linked to consumption of wild animal meat. Wilderness Environ Med 2020;31(2):235-244. https://doi.org/10.1016/j.wem.2019.12.003 
  5. Kang SA, Cho MK, Park MK, Kim DH, Hong YC, et al. Alteration of helper T-cell related cytokine production in splenocytes during Trichinella spiralis infection. Vet Parasitol 2012; 186(3-4):319-327. https://doi.org/10.1016/j.vetpar.2011.12.002 
  6. Cho MK, Park MK, Kang SA, Park SK, Lyu JH, et al. TLR2-dependent amelioration of allergic airway inflammation by parasitic nematode type II MIF in mice. Parasite Immunol 2015;37(4):180-191. https://doi.org/10.1111/pim.12172 
  7. Kim J, Jo JO, Choi SH, Cho MK, Yu HS, et al. Seroprevalence of antibodies against Anisakis simplex larvae among health-examined residents in three hospitals of southern parts of Korea. Korean J Parasitol 2011;49(2):139-144. https://doi.org/10.3347/kjp.2011.49.2.139 
  8. Kang SA, Yu HS. Anti-obesity effects by parasitic nematode (Trichinella spiralis) total lysates. Front Cell Infect Microbiol 2023;13:1285584. https://doi.org/10.3389/fcimb.2023.1285584 
  9. Kang SA, Choi JH, Baek KW, Lee DI, Jeong MJ, et al. Trichinella spiralis infection ameliorated diet-induced obesity model in mice. Int J Parasitol 2021;51(1):63-71. https://doi.org/10.1016/j.ijpara.2020.07.012 
  10. Yang J, Pan W, Sun X, Zhao X, Yuan G, et al. Immunoproteomic profile of Trichinella spiralis adult worm proteins recognized by early infection sera. Parasit Vectors 2015;8:20. https://doi.org/10.1186/s13071-015-0641-8 
  11. Kuo CS, Chen JS, Lin LY, Schmid-Schonbein GW, Chien S, et al. Inhibition of Serine protease activity protects against high fat diet-induced inflammation and insulin resistance. Sci Rep 2020;10(1):1725. https://doi.org/10.1038/s41598-020-58361-4 
  12. Kriaa A, Jablaoui A, Mkaouar H, Akermi N, Maguin E, et al. Serine proteases at the cutting edge of IBD: focus on gastrointestinal inflammation. Faseb J 2020;34(6):7270-7282. https://doi.org/10.1096/fj.202000031RR 
  13. Patel S. A critical review on serine protease: key immune manipulator and pathology mediator. Allergol Immunopathol (Madr) 2017;45(6):579-591. https://doi.org/10.1016/j.aller.2016.10.011 
  14. Soh WT, Zhang J, Hollenberg MD, Vliagoftis H, Rothenberg ME, et al. Protease allergens as initiators-regulators of allergic inflammation. Allergy 2023;78(5):1148-1168. https://doi.org/10.1111/all.15678 
  15. Wang J, Zhang S, Wang Y, Zhu Y, Xu X, et al. Effect of galectin-1 on prognosis and responsiveness of immune checkpoint plus tyrosine kinase inhibition in renal cell carcinoma. Cancer Med 2024;13(7):e7113. https://doi.org/10.1002/cam4.7113 
  16. Baek JH, Kim DH, Lee J, Kim SJ, Chun KH. Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARγ) in mice. Cell Death Dis 2021;12(1):66. https://doi.org/10.1038/s41419-020-03367-z 
  17. Fryk E, Silva VRR, Jansson PA. Galectin-1 in obesity and type 2 diabetes. Metabolites 2022;12(10). https://doi.org/10.3390/metabo12100930 
  18. Yu X, Qian J, Ding L, Yin S, Zhou L, et al. Galectin-1: a traditionally immunosuppressive protein displays context-dependent capacities. Int J Mol Sci 2023;24(7). https://doi.org/10.3390/ijms24076501 
  19. Lv Y, Dai M, Wang M, Chen F, Liu R. Anti-inflammatory property of galectin-1 in a murine model of allergic airway inflammation. J Immunol Res 2019;2019:9705327. https://doi.org/10.1155/2019/9705327 
  20. Ge XN, Ha SG, Greenberg YG, Rao A, Bastan I, et al. Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1. Proc Natl Acad Sci U S A 2016;113(33):4837-4846. https://doi.org/10.1073/pnas.1601958113 
  21. Arda-Pirincci P, Aykol-Celik G. Galectin-1 reduces the severity of dextran sulfate sodium (DSS)-induced ulcerative colitis by suppressing inflammatory and oxidative stress response. Bosn J Basic Med Sci 2020;20(3):319-328. https://doi.org/10.17305/bjbms.2019.4539 
  22. Wenger Y, Galliot B. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome. BMC Genomics 2013;14:204. https://doi.org/10.1186/1471-2164-14-204 
  23. Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol 2021;23(11):e13345. https://doi.org/10.1111/cmi.13345 
  24. Mikami M, Yocum GT, Heller NM, Emala CW. Reduced allergic lung inflammation and airway responsiveness in mice lacking the cytoskeletal protein gelsolin. Am J Physiol Lung Cell Mol Physiol 2020;319(5):833-842. https://doi.org/10.1152/ajplung.00065.2020 
  25. Lechuga S, Ivanov AI. Actin cytoskeleton dynamics during mucosal inflammation: a view from broken epithelial barriers. Curr Opin Physiol 2021;19:10-16. https://doi.org/10.1016/j.cophys.2020.06.012 
  26. Wang ZQ, Wang L, Cui J. Proteomic analysis of Trichinella spiralis proteins in intestinal epithelial cells after culture with their larvae by shotgun LC-MS/MS approach. J Proteomics 2012;75(8):2375-2383. https://doi.org/10.1016/j.jprot.2012.02.005 
  27. Sereda MJ, Hartmann S, Lucius R. Helminths and allergy: the example of tropomyosin. Trends Parasitol 2008;24(6):272-278. https://doi.org/10.1016/j.pt.2008.03.006 
  28. Hewitson JP, Maizels RM. Vaccination against helminth parasite infections. Expert Rev Vaccines 2014;13(4):473-487. https://doi.org/10.1586/14760584.2014.893195 
  29. Sun J, Zhong X, Fu X, Miller H, Lee P, et al. The actin regulators involved in the function and related diseases of lymphocytes. Front Immunol 2022;13:799309. https://doi.org/10.3389/fimmu.2022.799309 
  30. Colaco CA, Bailey CR, Walker KB, Keeble J. Heat shock proteins: stimulators of innate and acquired immunity. Biomed Res Int 2013;2013:461230. https://doi.org/10.1155/2013/461230 
  31. Zininga T, Ramatsui L, Shonhai A. Heat shock proteins as immunomodulants. Molecules 2018;23(11). https://doi.org/10.3390/molecules23112846 
  32. Kaur J, Kaur S. ELISA and western blotting for the detection of Hsp70 and Hsp83 antigens of Leishmania donovani. J Parasit Dis 2013;37(1):68-73. https://doi.org/10.1007/s12639-012-0133-0 
  33. Kanamura HY, Hancock K, Rodrigues V, Damian RT. Schistosoma mansoni heat shock protein 70 elicits an early humoral immune response in S. mansoni infected baboons. Mem Inst Oswaldo Cruz 2002;97(5):711-716. https://doi.org/10.1590/s0074-02762002000500022 
  34. Sotillo J, Valero L, Sanchez Del Pino MM, Fried B, Esteban JG, et al. Identification of antigenic proteins from Echinostoma caproni (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunol 2008;30(5):271-279. https://doi.org/10.1111/j.1365-3024.2007.01019.x 
  35. Fang L, Sun L, Yang J, Gu Y, Zhan B, et al. Heat shock protein 70 from Trichinella spiralis induces protective immunity in BALB/c mice by activating dendritic cells. Vaccine 2014;32(35):4412-4419. https://doi.org/10.1016/j.vaccine.2014.06.055 
  36. Shevchenko M, Servuli E, Albakova Z, Kanevskiy L, Sapozhnikov A. The role of heat shock protein 70 kDa in Asthma. J Asthma Allergy 2020;13:757-772. https://doi.org/10.2147/jaa.S288886 
  37. Van der Eycken W, de Almeida Engler J, Van Montagu M, Gheysen G. Identification and analysis of a cuticular collagen-encoding gene from the plant-parasitic nematode Meloidogyne incognita. Gene 1994;151(1-2):237-242. https://doi.org/10.1016/0378-1119(94)90663-7