• Title/Summary/Keyword: turn-on delay

Search Result 121, Processing Time 0.02 seconds

Optical Transient Characteristics of Au-Compensated Silicon p-i-n Diode Switches (금이 보상된 실리콘 p-i-n 다이오드 스위치의 광 과도 특성)

  • Min, Nam-Ki;Henderson, H.T.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1205-1208
    • /
    • 1995
  • The optically-gated p-i-n diode switches have been fabricated with gold-compensated silicon. The turn-on and turn-off delay times and the rise and fall times were measured as a function of optical power level, bias, and pulse width. The turn-on characteristics shows a strong dependence an optical pulse power and a delay time(${\delta}{\iota}$) between two pulses, but a weak dependence on the width of optical pulse. Actually there is no turn-off delay in gold-doped p-i-n switches and the fall time is negligible.

  • PDF

Optimal Design of the Signalized Intersection in Pusan Area using the Protected-Permissive Left-Turn Signal System (보호.비보호 혼용좌회전 신호체계를 고려한 부산지역 신호교차로의 최적설계에 관한 연구)

  • Kim, B.C.;Kim, T.G.
    • Journal of Korean Port Research
    • /
    • v.11 no.1
    • /
    • pp.29-44
    • /
    • 1997
  • The purpose in this study was to review the travel characteristics of the left-turn signal system on the signalized intersections under the study in Pusan area, construct the appropriate transportation systems under the different left-turn signal system : Protected Left-Turn signal system, Permissive Left-Turn signal system, and Protected-Permissive Left-Turn signal system based upon the travel characteristics reviewed, and finally suggest the optimal left-turn signal system which could reduce traffic delay and fuel consumption. and also improve traffic safety on the signalized intersections based upon the optimal transportation system constructed. Based upon the results, it was concluded that the Protected-Permissive Left-Turn signal system would be better and safer than the Permissive Left-Turn signal system in the aspects which could reduce decrease delay and fuel consumption, and simultaneously increase traffic safety on the signalized intersections, even if the optimal Permissive Left Turn signal system was found to be the best left-turn signal system in the aspects of the Measures of Effectiveness(MOE) on the intersections under the study.

  • PDF

A Study on the Application of PPLT(Protected/Permitted Left-Turn) Considering the Traffic Characteristics of PLT/PPLT (보호좌회전과 보호/비보호 겸용 좌회전 통행특성 차이를 고려한 보호/비보호 겸용 좌회전 적용방안에 관한 연구)

  • Nam, Sang-bum;Kim, Ju-hyun;Shin, Eon-kyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.30-44
    • /
    • 2020
  • The application of PPLT is difficult to analyze and judge only from the effects of the delay time. In this study, the application of PPLT was proposed using not only the delay time of PLT and PPLT due to the change in traffic volume and the number of opposite straight lanes but also the traffic volume of passing a left turn and the number of conflict risks as indicators. According to the analysis, the more left-turn traffic than capacity and the less opposite-straight volume, the greater the PPLT effect. On the other hand, if the left-turn traffic is below capacity, the delay time will be reduced partially, but the overall passing left turn volume will not increase, and the conflict risk will increase. In addition, the conflict risk increases in the third lane or higher. Moreover, the difference of passing left-turn volume between PLT and PPLT showed a pattern similar to the delay time difference, and the PPLT coverage was wider than the difference in delay time and was associated more with the conflict risk numbers. Therefore, it would be reasonable to use passing left-turn traffic primarily, consider the delay time below the left-turn capacity, and consider the conflicting risk numbers simultaneously at or above the opposite straight three lanes.

Efficiency Questions of the Left-turn Prohibit in Case of 4-Leg Intersections with 5-Phase Signal System (5현시 신호체계 4지교차로의 좌회전 금지에 따른 효율성 분석)

  • 변상철;박병호
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.4
    • /
    • pp.91-106
    • /
    • 1996
  • This paper deals with on the efficiency questions of the left-turn prohibit at an isolated intersection and a corridor with 5-phase signal system. Its objectives are three-fold ; (1) to analyze the efficiency of the left-turn prohibit with the use of an imaginary network, (2) to evaluate various factors under consideration in decision making on the left-turn prohibit, (3) to provide a framework for estimating and evaluating overall impacts of the left-turn prohibit in traffic network. the major findings using an imaginary network and computer packages such as MINUTP, TRANSYT-7F and STATGRAPH are followings. First, left-turn prohibit reduces cycle length by 33 seconds and delay time per vehicle by 36 seconds at an isolated intersection, and cycle length by 31 seconds and delay time per veicle by 43 seconds along a corridor. Second, total vehicle mile of travel and total travel time at an isolated intersection seem up to increase 38.85 miles(57.36km), 14.4 hour on the average, Regarding to a corridor, total vehicle mile of travel is increased by 50.14 miles(80.22km), but total travel time is decreased by129.9 hours. Third, the efficiency of left-turn prohibit are affected the following eight factors including left-turn volume(veh/hr) and ratio(%), average delay time per vehicle(sec/veh) and others. Finally, several simple and multiple regression models to evaluate the impacts on the left-turn prohibit are formulated from the above eight factors. It can be expected that these models will take an important role in decision-making of left-turn prohibit.

  • PDF

A Study on Application of TPCLT(Twice Per Cycle Left-Turn) for a Signalized Three-Leg Intersection (3지 교차로의 TPCLT(Twice Per Cycle Left-Turn) 적용 방안 연구)

  • Han, Dajeong;Kim, Eungcheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.77-92
    • /
    • 2019
  • TPCLT is a advanced signal system that serves twice left turn phases during the same cycle. TPCLT can be a useful where the left turn traffic volume is high and the length of the left turn lane is short. This study examined the effectiveness of TPCLT in reducing delay for a signalized three-Leg intersection and proposed the application of TPCLT signal system. 108 scenarios with different traffic volumes were created. This study analyzed the control delay of the three-Leg intersection in case TPCLT is operated and non-TPCLT is operated. As a result of analysis, it was shown that TPCLT was effective in most of the scenarios. When traffic volume ratio of the left turn is 30~40%, TPCLT was more effective at reducing the control delay. The study result shows significant delay reduction for the left turning traffic and it is approximately 50 seconds. The opposing movement's average control delay increased 2 seconds. The effect of TPCLT on the length of left turn lane was analyzed. As a result, it is found that TPCLT is effective when the length of left turn lane is 30%~60% compared to that of conventional three leg intersection operations.

Analysis of the Effects of Traffic Signal Operation Methods (대전시 신호운영체계 개편에 따른 효과분석)

  • Lee, Jung-Beom;Lee, Beom-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.4
    • /
    • pp.60-67
    • /
    • 2010
  • Delay reduction of vehicles at the intersection is highly dependent on the signal operation method. Most previous traffic operations have focused on minimizing delay by adjust traffic offset. However, these methods have limitation in solving traffic problem if the volume reaches or exceeds the capacity. In this paper, it was analyzed that the effectiveness of various signal operation methods such as left-turn prohibition, and using protected mixed with permitted left turn using the traffic data from Daejeon city. In case of the left-turn prohibition of a intersection, the control delay reduced from 54.2 seconds to 22.7 seconds and especially, the delay of the southbound was drastically reduced. In addition, the delay was highly reduced from 27.0 seconds to 12.1 seconds when the operation system was changed to use protected mixed with permitted left turn.

Missile Autopilot Design for Agile Turn Using Time Delay Control with Nonlinear Observer

  • Lee, Chang-Hun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.266-273
    • /
    • 2011
  • This paper deals with missile autopilot design for agile turn phase in air-to-air engagement scenarios. To attain a fast response, angle-of-attack (AOA) is adopted for an autopilot command structure. Since a high operational AOA is generally required during the agile turn phase, dealing with the aerodynamic uncertainties can be a challenge for autopilot design. As a remedy, a new controller design method based on robust nonlinear control methodology such as time delay control is proposed in this paper. Nonlinear observer is also proposed to estimate the AOA in the presence of the model uncertainties. The performance of the proposed controller with variation of the aerodynamic coefficients is investigated through numerical simulations.

Effectiveness Analysis on the Installation of Right-Turn Bypass Lane in Roundabout (회전교차로 우회전 별도차로 설치 효과 검토)

  • Lim, Jin-Kang;Kim, Kyung-Hwan;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.29-37
    • /
    • 2010
  • This study deals with the Right-Turn Bypass Lane in Roundabout. The purpose of the study is to comparatively analysis the effectiveness questions on the installation of right-turn bypass lane in roundabout. In pursuing the above, this study analyzed after and before of the right turn bypass lane plan by VISSIM software. The right turn bypass lane is formed by control type of yield and control type of joint were compared and analyzed the effects of the operation. The main results analyzed are as follows. First, after Right-Turn Bypass Lane is Installed, the traffic volume rate of the right-turn increasing by average delay time per vehicle is on the gradual decrease, maximum average about 28% with the fact that decreases. Second, control type of yield and control type of joint are both average delay time per vehicle decreasing by the traffic volume rate of the right-turn is on the gradual increase. Control type of joint was analyzed with the fact that has the maximum average about 18% delay decrement efficiency.

Traffic Signal Timing at Interconnected and Semi-Protected-Left-Turn Intersections for Energy Saving (에너지절약을 위한 상호련결된 반보호좌회전 교차로의 신호시간설계)

  • 김경환
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.1
    • /
    • pp.25-40
    • /
    • 1990
  • This study was undertaken to develop a traffic signal timing method for interconnected and semi-protected-left-turn intersections(the intersections which have left-turn signal but not exclusive left-turn lanes) on four-lane streets for energy saving and to computerize the method for the practical use. For this study, a probability model which could estimate the utilized time of the shared left-turn lane by through traffic during green period was developed based on field studies. The two left-turn treatments, leading and lagging left-turns, were tested for the intersections, and it can be concluded that the leading left-turn was more efficient for the normal urban streets on which through traffic is major traffic. Adopting the leading left-turn macro-models to estimate vehicular average delay and proportions of vehicles stopped at the intersections were developed. Using the two models as well as the idling fuel consumpution rate and the excess fuel consumption per stop-go speed change, a traffic signal timing method for the intersections for energy saving was developed and computerized. The method can be used for more than four-lane streets and for other measures of effectiveness such as minimum delay, minimum stop rates, etc.

  • PDF

Traffic Signal Timing at Semi-Protected Left-Turn Intersections for Energy Saving (에너지절약을 위한 반보호 좌회전 교차로의 신호시간설계)

  • 김경환
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.2
    • /
    • pp.19-35
    • /
    • 1987
  • Transportation energy saving is a national concern because all national petroleum energy is imported. A number of intersections are operating as semi-protected intersections, which have left-turn signal but not exclusive left-turn lanes, because of limited roadways in urban areas. Since the traffic signal methods for the intersections having left-turn signal/lanes cannot be applied to the semi-protected intersection, it is needed to develop a new technique. The purpose of this study was to develop a traffic signal timing method at semi-protected intersections for energy saving and to computerize the method for the practical use. A probability model which could estimate left-turn utilization factors of through traffic during green signal was developed based on field studies. Employing the factors, macro-models to estimate vehicular average delay and proportions of vehicles stopped at the semiprotected intersections were developed. The calculated values of the delay model agreed well with the simulated values of a simulation model using SLAM Ⅱ, a simulation language. Using the two models and the idling fuel consumption rate and the excess fuel consumption per stop-go speed change of vehicles. a traffic signal timing method at semi-protected intersections for energy saving was developed and computerized. The method can be used for other measures of effectiveness such as minimum delay, minimum stop ratio, etc.

  • PDF