• Title/Summary/Keyword: turfgrass quality

Search Result 184, Processing Time 0.022 seconds

Turfgrass Selection for Soccer Fields - A Simulation of the Inchon 2002 World Cup Stadium - (축구경기장의 잔디초종 선정에 관한 연구 - 2002년 월드컵 인천경기장 모형돔을 대상으로 -)

  • 심상렬;정대영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.88-94
    • /
    • 2002
  • This study was conducted to select suitable turfarasses for use at 2002 world cup soccer fields in Korea. A 1/1000 scale Inchon worldcup soccer dome was constructed for this research. Species and seeding rates of cool-season grasses used inside and outside the dome were Kentuck bleugrass 10g/$m^2$ (KB), Kentucky bleugrass 10g/$m^2$+ perennial ryegrass 10g/$m^2$ mixture (KB+PR) and Kentucky bleugrass 6g/$m^2$+tall fescue 14g/$m^2$+ perennial ryegrass 4g/$m^2$ mixture (KB+TF+PR). Warm-season grasses also used in this study were Zoysia japonica 'Anyangjungzii' (ZA) and Zoysia japonica 'Zenith'(ZZ) which were layed as sod. So, total 5 types of grasses were used inside and outside the dome. The rootzone was constructed by the multi-layer method(United States Golf Association method). The plots were designed by randomized block design. Cool-season grasses(KB, KB+PR, KB+TF+PR) were found to be better performers for visual rating and visual color than the zoysiagrasses(ZA, ZZ). There were no significant differences in turf performance within cool-season grasses, while ZA showed better turf performances than ZZ within zoysiagrasses. The green color was maintained for about 10 months in the col-season grasses(KB, KB+PR, KB+TF+PR) compared to about 5~6 months in the zoysiagrasses. Root length and density data revealed higher values for KB, KB+PR and KB+TF+PR compared to ZA and ZZ. Root performance of 22 was better than ZA within zoysiagrasses which was the opposite result of turf performances. There was also no significant difference between U performance inside and outside the dome. However, the decreasing tendency of turf quality inside the dome at the end of the study showed that more proper maintenance technology was needed inside the d[me. It could be concluded by this study that cool-season grasses(KB, KB+PR, KB+TF+PR) were more suitable turfgrasses than waits-season zoysiagrasses(ZA, ZZ) for use at 2002 world cup soccer fields in Korea.

Performance of Three Warm Season Turfgrasses under Linear Gradient Irrigation

  • Ow, Lai Fern;Ghosh, Subhadip
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 2017
  • The appropriate level of irrigation for turfgrasses is vital to the performance of the turfgrass as well as conservation of water. Linear gradient irrigation system (LGIS) facilitates long-term study of turf performance under continuous irrigation gradients at extreme ends of the irrigation scale. The objectives of this study were to: a) determine the minimum irrigation requirements and relative drought resistance in three warm season turfgrasses; and b) evaluate the medium to long-term effects of irrigation levels on turf persistence, weed invasion, and susceptibility to diseases. Results suggest that grasses differed in drought resistance and persistence under variable irrigation regimes. Irrigation (Ep) required for consistent acceptable turf quality for respective grasses was Cynodon dactylon x C. transvaalensis (61%), Zoysia matrella L. Merr (73%), and Stenotaphrum secundatum 'Palmetto' (86%). Brown patch infection was most prevalent in Stenotaphrum secundatum 'Palmetto' at 12 and 125% Ep irrigation. Cynodon dactylon x C. transvaalensis and Zoysia matrella L. Merr were better able to adapt to the various irrigation regimes, and this ability allowed these species to resist drought, and maintain turf coverage which in turn, kept weeds and the occurrence of diseases at bay. Ranking these grasses for their drought tolerance abilities showed that Cynodon dactylon x C. transvaalensis had the most outstanding resistance against drought, followed by Zoysia matrella L. Merr, and lastly, Stenotaphrum secundatum 'Palmetto'. Despite having the highest irrigation requirement, Stenotaphrum secundatum 'Palmetto' was still not able to maintain persistence at high irrigation regimes. Likewise, this grass also lost turf coverage at low irrigation levels.

Effect of Silicate on Creeping Bentgrass Growth of Green at the Golf Course during Summer in Korea (규산염의 시비가 크리핑 벤트그래스의 여름철 생육에 미치는 영향)

  • Lee, Jae-Pil;Yoo, Tae-Young;Moon, Se-Jong;Ham, Suon-Kyu;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.217-223
    • /
    • 2008
  • This study was conducted to figure out the effect of silicate as growth stimulator on growth of 'Pencrosss' creeping bentgrass. Creeping bentgrass(Agrostis palustris cv. 'Pencross') at the nursery of Sinwon Country Club was used. Silicate was applied at the concentration of 0, $200{\times}$, $500{\times}$, $1.000{\times}$. Polt size was 1 by 2 meter and there were three replications with completely randomized design(CRD). Creeping bentgrass growth was evaluated with visual turf grass quality, root length and No. of tiller density(ea/$cm^2$). Results of this study are as followings; 1. Average root length with silicate was $1.5{\sim}1.9cm$ longer than control. Especially, Root length of silicate was $7{\sim}8cm$ in summer. 2. Tiller density with silicate was $l8{\sim}22ea/cm^2$, $0.4{\sim}2.l$ less than control. But there was no significant difference. 3. Visual turfgrass quality with silicate was $5.0{\sim}8.3$, $0.3{\sim}1.5$ higher than control. But there was no significant difference. In conclusion, silicate might be grown as root growth stimulator of creeping bentgrass during summer in Korea. However, this study was conducted under one year. Accordingly, in-depth experiment should be done over several years.

Comparative Performance of Three Tropical Turfgrasses Digitaria longiflora, Axonopus compressus and St. Augustinegrass under Simulated Shade Conditions

  • Chin, Siew-Wai
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • Shade affects turf quality by reducing light for photosynthesis. The shade tolerance of the tropical grasses, Digitaria longiflora and Axonopus compressus were evaluated against Stenotaphrum secundatum (St. Augustinegrass). The grasses were established under shade structures that provide 0%, 50%, 75% or 90% shade level for 30 days. A suite of leaf traits, recorded from similar leaf developmental stage, displayed distinct responses to shade conditions. Leaf length, relative to control, increased in all three species as shade level increased. The mean leaf extension rate was lowest in St. Augustinegrass (80.42%) followed by A. compressus (84.62%) and D. longiflora (90.78%). The higher leaf extension rate in D. longiflora implied its poor shade tolerance. Specific leaf area (SLA) increased in all species with highest mean SLA increase in D. longiflora ($348.55cm^2mg^{-1}$)followed by A. compressus ($286.88cm^2mg^{-1}$) and St. Augustinegrass ($276.28cm^2mg^{-1}$). The highest SLA increase in D. longiflora suggested its lowest performance under shade. The percent green cover, as estimated by digital image analysis, was lowest in D. longiflora (53%) under 90% shade level compared to both species. The relative shade tolerance of the three turfgrasses could be ranked as St. Augustinegrass > A. compressus > D. longiflora.

Comparison of Establishment Vigor, Uniformity, Rooting Potential and Turf Qualtiy of Sods of Kentucky Bluegrass, Perennial Ryegrass, Tall Fescue and Cool-Season Grass Mixtures Grown in Sand Soil (모래 토양에서 켄터키블루그라스, 퍼레니얼라이그라스, 톨훼스큐 및 한지형 혼합구 뗏장의 피복도, 균일도, 근계 형성력 및 잔디품질 비교)

  • 김경남;박원규;남상용
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.129-146
    • /
    • 2003
  • Research was initiated to compare establishment vigor, uniformity, rooting potential and turf quality in sods of cool-season grasses (CSG). Several turfgrasses grown under pure sand soil were tested. Establishment vigor, uniformity, rooting potential and turf quality were evaluated in the study. Turfgrass entries were comprised of three blends from Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.), respectively and three mixtures among them. Differences by treatments were significantly observed in establishment vigor, uniformity, rooting potential and turf quality. Early establishment vigor was mainly influenced by germination speed, being fastest with PR, intermediate with TF and slowest with KB. In a late stage of growth, however, it was affected more by growth habit, resulting in highest with KB and slowest with TF. There were considerable variations in sod uniformity among turfgrasses. Best uniformity among monostand sods was associated with KB, while poorest one with TF. PR sod produced intermediate uniformity between KB and TF. The uniformity of polystand sods of CSG mixtures was inferior to that of monostands of KB, PR and TF, due to characteristics of mixtures comprised of a variety of color, density, texture and growth habit. The greatest potential of sod rooting was found with PR and the poorest with KB. Intermediate potential between PR and KB was associated with TF. In CSG mixtures, it was variable, depending on turfgrass mixing rates. Generally, the higher the PR in mixtures, the greater the sod rooting potential. At the time of sod harvest, however, turfgrass quality of KB was superior to that of PR. because of its characteristics of uniform surface, high density and good mowing quality. These results suggest that a careful expertise based on turf quality as well as sod characteristics like establishment vigor, uniformity and rooting potential be strongly required for the success of golf course or athletic field in establishment.

Evaluating the Influence of Liquid Organic Polymer on Soil Aggregation and Growth of Perennial Ryegrass (유기중합물이 토양의 입단화와 페레니얼 라이그래스의 성장에 미치는 영향)

  • Lee, Sang-Kook;Minner, David
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.69-72
    • /
    • 2011
  • Soil aggregate is a vigorous procedure including soil physical, chemical, and biological processes. Pore space created by binding these particles together improves retention and exchange of air and water. Various researches have reported that the benefits of organic polymers that may increase aggregate stability. The purpose of the study was to determine if a liquid organic polymer mixture has any influence on perennial ryegrass quality or soil aggregation. $Turf2Max^{(R)}$ was applied to two soils as a source of liquid organic polymer. Fine-loamy soil from local Iowa topsoil with 4.0% organic matter was screened and dried. Commercial baseball infield clay, $QuickDry^{(R)}$, was used as the second soil There were three rates of liquid organic polymer (0, 2, and 4%). there was no visual improvement in turf grass color, quality, or growth by using organic polymer. It is possible that aggregate stability increases with use of organic polymer. The aggregate stability study needs to be repeated in the greenhouse and then substantiated under field conditions for these preliminary observations.

Water-Proof Technology for Water Hazard in Golf Course in Korea (국내 골프장 연못의 방수기술)

  • Kim Won-Jo;Lee In-Hwan;Lee Jae-Pil;Kim Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.2
    • /
    • pp.77-95
    • /
    • 2004
  • This study was conducted to find out definition, specification and characteristics of water-proof method for pond at golf courses that located in the mountain in Korea. Water-proof method of pond was selected by location, kind of soil, area, depth, cost, construction period and so on. 1. Soil Bentonite Sealing Liner(SBL) is to mix soil with a good quality bentonite. Then the mixed material was dressed on the bottom of pond. $\\$Merit of SBL is to purify the water and planting is possible. It can also reduce construction period and is economical. It's easy to find out the leak points. Demerit of SBL is expensive, if good quality soil is not in constructing site. Shape of pond edge is simple. 2. Ethylen Propylene Diene Monomer Sheef(EPDM-Sheet) makes use of sheet that resists to acid and alkaline. EPDM-Sheet spreads out as a mat on the pond for water-proof. Merit of EPDM-Sheet is to perfectly prove water and make a diverse shape of pond edge. Demerit of EPDM-Sheet is not friendly to environment. It needs drain system, air ventilation and long period of construction. It is also difficult to find out leaking points in this method. 3. Water proof of ESS-13 uses ESS-13 that is resin of vegetable matter and friendly to environment. To prove water of pond, ESS-13 is delicate with water in the pond. After that, Ess-13 in the water is expanded at pore space in the soil and cover with soil. ESS-13 can be to prove a leaking pond in golf course under business. ESS-13 is cheap and it needs short construction period. It does not need to switch the old water-proof system, additionally. It needs to move fishes to other place before utilizing ESS-13.

Growth Evaluation of 10 Cultivars of Creeping Bentgrass in Salt Affected Environment (염해지에서 크리핑벤트그래스 10개 품종의 생육 비교)

  • Kim, Jun-Beom;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.149-160
    • /
    • 2008
  • This study was carried out to examine the growth performance of 10 cultivars of creeping bentgrass under salt injury in Seo-san reclaimed area. Turfgrass performance studies included 10 creeping bentgrass cultivars (T-1, L-93, Penn A1, Pennlinks II, Seaside II, Declaration, Penn A4, Crenshaw, Dominant, and Penncross). Ten creeping bentgrass cultivars were grown on a USGA recommended research green. Plots were seeded on May 31, 2006 at the rate of $7\;g{\cdot}m^{-1}$. Electric conductivities of irrigation water (ECw) and soil (ECe) were ranged from 0.28 to $3.3\;d\;S{\cdot}m^{-1}$ and from 0.25 to $3.5\;d\;S{\cdot}m^{-1}$ respectively. Leaf color, turf quality, coverage rate, and growth rate were checked under the salty condition in reclaimed land for 2 year. Creeping bentgrass cultivars of T-1, Penn links, and Crenshaw presented dark green color and Penn A1, Declaration showed lighter green color. Penn A1, Penn A4 and L-93 exhibited the highest overall turfgrass quality. Average visual coverage was 75.3% after eleven weeks after seeding. Dominant, L-93, and Penn A1 resulted in higher visual coverage compared to the other cultivars. There was no difference in density among cultivars at 1 year after establishment. However, Declaration, Penn A1, T-1, and L-93 showed higher density compared to the other cultivars at 2 years after seeding. Creeping bentgrass showed different quality, density and color in salty soil (ECe: $0.25-3.5\;d\;S{\cdot}m^{-1}$) and from application of salty irrigation water (ECw: $0.28-3.3\;d\;S{\cdot}m^{-1}$) conditions. These results will be useful where selecting green cultivars for the golf courses in reclaimed land area.

The Effect of Developed SCB Liquid Fertilizer on the Growth of Creeping Bentgrass (개량 SCB 저농도액비가 크리핑벤트그래스의 생육에 미치는 효과)

  • Ham, Suon-Kyu;Kim, Young-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.100-105
    • /
    • 2011
  • This study was conducted to evaluate the effect of developed SCB(DSCB) produced by adding N, P and K to SCB liquid fertilizer on the growth of creeping bentgrass. Fertilizer treatments were designed as follows; non-fertilizer (NF), control (CF; chemical fertilizer), 100 DSCB (250 $ml{\cdot}m^{-2}$DSCB), 80DSCB (200 $ml{\cdot}m^{-2}$DSCB) and CF+SCB (CF+250 $ml{\cdot}m^{-2}$SCB). Every treatment was arranged in a randomized complete block design with three replications. In creeping bentgrass, turf color index, chlorophyll index, dry weight, shoot number and nutrient content were measured. The results were as follows; Chemical properties of soil was hardly affected by DSCB and SCB applications. Turf color index and chlorophyll index in DSCB and SCB treatment were increased by 2~3% and 14~19% than those in NF, respectively, and similar to those of CF treatment. As applied to DSCB and SCB, shoot number was increased by 7%, 21%, 36% in 100 DSCB, 80 DSCB and CF+SCB than NF, respectively, and by 19% in CF+SCB than in CF. Supplying DSCB and SCB increased dry weight of creeping bentgrass, compared to CF treatment. Compared with CF, nitrogen and P content in tissue was increased in CF+SCB and in 80DSCB, respectively. These results suggested that applications of DSCB and SCB promoted turf quality and growth of creeping bentgrass by enhancing N and P uptake and shoot number.

Effect of High-Humidity and High Temperature at Kentucky Bluegrass Growth in Summer (하절기 한지형 잔디 재배 시 침수 및 고온으로 인한 잔디의 생육 불량 현상)

  • Lee, Jeong-Ho;Choi, Jun-Yong;Lee, Song-Ho;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • The growth of root and shoot normally decline dramatically in mid-summer of Korea, moreover the cool-season turfgrassgrass eventually wither to death over $30^{\circ}C$. The increase of air temperature also drives the heat of soil, that makes stress on root system. The heat stress affects physiological mechanisms of hormonal unbalance that stimulates shoot growth, photosynthesis, and transpiration. To solve those problems, many studies have been carried out to control soil moisture and OM content to decrease soil temperature for dissolving the growth retardant by heat stress. This study initiated to analyze the change of soil temperature with soil moisture, and the effect of soil depth and moisture content on heat transmit and thermal changes on turfgrass growth(productivity, green color, and damage by dryness and high temperature). Kentucky bluegrass plots prepared with 25%, 33%, 40% soil moisture treatments. Soil temperature was measured every five min. with four thermo-sensors at 12 and 2 cm soil depth. The most acceptable growth showed at 33% soil moisture, but the worst result showed at 40%. The soil moisture seriously affected on the growth of Kentucky bluegrass, however the quality of turfgrass may acceptable if we can control soil moisture down to 33% when the flooding season of monsoon.