• Title/Summary/Keyword: turbulence effects

Search Result 673, Processing Time 0.034 seconds

Development of devices and methods for simulation of hurricane winds in a full-scale testing facility

  • Huang, Peng;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Liu, Roy
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.151-177
    • /
    • 2009
  • The International Hurricane Research Center (IHRC) at Florida International University (FIU) is pursuing research to better understand hurricane-induced effects on residential buildings and other structures through full-scale aerodynamic and destructive testing. The full-scale 6-fan Wall of Wind (WoW) testing apparatus, measuring 4.9 m tall by 7.3 m wide, is capable of generating hurricane-force winds. To achieve windstorm simulation capabilities it is necessary to reproduce mean and turbulence characteristics of hurricane wind flows. Without devices and methods developed to achieve target wind flows, the full-scale WoW simulations were found to be unsatisfactory. To develop such devices and methods efficiently, a small-scale (1:8) model of the WoW was built, for which simulation devices were easier and faster to install and change, and running costs were greatly reduced. The application of such devices, and the use of quasiperiodic fluctuating waveforms to run the WoW fan engines, were found to greatly influence and improve the turbulence characteristics of the 1:8 scale WoW flow. Reasonable reproductions of wind flows with specified characteristics were then achieved by applying to the full-scale WoW the devices and methods found to be effective for the 1:8 scale WoW model.

Modified mixing coefficient for the crossflow between sub-channels in a 5 × 5 rod bundle geometry

  • Lee, Jungjin;Lee, Jun Ho;Park, Hyungmin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2479-2490
    • /
    • 2020
  • We performed experiments to measure a single-phase upward flow in a 5 × 5 rod bundle with spacer grids using a particle image velocimetry, focusing on the crossflow. The Reynolds number based on the hydraulic diameter and the bulk velocity is 10,000. The ratio of pitch between rods and rod diameter is 1.4 and spacer grid is installed periodically. The turbulence in the rod bundle results from the combination of a forced mixing and natural mixing. The forced mixing by the spacer grid persists up to 10Dh from the spacer grid, while the natural mixing is attributed to the crossflow between adjacent subchannels. The combined effects contribute to a sinusoidal distribution of the time-averaged stream-wise velocity along the lateral direction, which is relatively weak right behind the spacer grid as well as in the gap. The streamwise and lateral turbulence intensities are stronger right behind the spacer grid and in the gap. Based on these findings, we newly defined a modified mixing coefficient as the ratio of the lateral turbulence intensity to the time-averaged streamwise velocity, which shows a spatial variation. Finally, we compared the developed model with the measured data, which shows a good agreement with each other.

A Study on the Effects of Turbulence to Ultimate Loads Acting on the Blade of Wind Turbine (풍력발전시스템의 블레이드에 작용하는 극한하중에 대한 난류의 영향 연구)

  • Hyun, Seung-Gun;Kim, Keon-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2013
  • This study has analysed the ultimate loads acting on a wind turbine which is operating in a high turbulent flow condition because the ultimate loads are critical factors on the safe design of wind turbine. Since wind flow on the most parts of Korean mountainous are strongly influenced by complex configurations of the topography, turbulence intensity on somewhere is so stronger than an international design standard. For this reason, the characteristics of turbulent wind data collected from actual sites were analyzed and used for the ultimate load evaluation of the wind turbine. With the 270 design load cases on the international standards, the differences of ultimate loads on the wind turbine operating in the standard or high turbulent wind condition are calculated and compared for the an enhanced knowledge of the safe design basis. As are result, it is revealed the specific ultimate loads are strongly affected by the high turbulent wind conditions, thus the characteristics of turbulent flow must be considered during the design of wind turbine.

Numerical Analysis of Flow Characteristics in Swirl Chamber Type Diesel Engine (연락공 형상에 따른 와류실식 디젤기관의 유동 특성 수치해석)

  • Kwon Taeyun;Choi Gyeungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.49-57
    • /
    • 2005
  • In this study, in-cylinder flow of the swirl chamber type diesel engine numerically simulated by VECTIS code. The flow fields during the intake and compression process were also investigated in detail. Numerical results revealed that the generation and distortion of the swirling, tumbling vortices and those influences on turbulence kinetic energy by shape of the jet passage, angle and area. It was also found that flow characteristics were affected by inflow velocity that depends on change of the jet passage shape. Swirl ratio was increased according to decrease of jet passage area, and was affected by piston motion according to increase of jet passage angle. Tumbling vortices had the similar in various cases, but tumble ratio was increased with the inflow velocity. The generation of turbulence kinetic energy was considerably influenced by complex effects of swirling and tumbling vortices.

Time-domain Computation of Broadband Noise due to Turbulence-Cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Cheong, Cheol-Ung;Jeong, Sung-Su;Cheung, Wan-Sup;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.812-817
    • /
    • 2005
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipole broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to gust-cascade interaction.

  • PDF

Analyses of International Standard Problem ISP-47 TOSQAN experiment with containmentFOAM

  • Myeong-Seon Chae;Stephan Kelm;Domenico Paladino
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.611-623
    • /
    • 2024
  • The ISP-47 TOSQAN experiment was analyzed with containmentFOAM which is an open-source CFD code based on OpenFOAM. The containment phenomena taking place during the experiment are gas mixing, stratification and wall condensation in a mixture composed of steam and non-condensable gas. The k-ω SST turbulence model was adopted with buoyancy turbulence models. The wall condensation model used is based on the diffusion layer approach. We have simulated the full TOSQAN experiment which had a duration 20000 s. Sensitivity studies were conducted for the buoyancy turbulence models with SGDH and GGDH and there were not significant differences. All the main features of the experiments namely pressure history, temperature, velocity and gas species evolution were well predicted by containemntFOAM. The simulation results confirmed the formation of two large flow stream circulations and a mixing zone resulting by the combined effects of the condensation flow and natural convection flow. It was found that the natural convection in lower region of the vessel devotes to maintain two large circulations and to be varied the height of the mixing zone as result of sensitivity analysis of non-condensing wall temperature. The computational results obtained with the 2D mesh grid approach were comparable to the experimental results.

CHAINED COMPUTATIONS USING AN UNSTEADY 3D APPROACH FOR THE DETERMINATION OF THERMAL FATIGUE IN A T-JUNCTION OF A PWR NUCLEAR PLANT

  • Pasutto, Thomas;PENiguel, Christophe;Sakiz, Marc
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • Thermal fatigue of the coolant circuits of PWR plants is a major issue for nuclear safety. The problem is especially accute in mixing zones, like T-junctions, where large differences in water temperature between the two inlets and high levels of turbulence can lead to large temperature fluctuations at the wall. Until recently, studies on the matter had been tackled at EDF using steady methods: the fluid flow was solved with a CFD code using an averaged turbulence model, which led to the knowledge of the mean temperature and temperature variance at each point of the wall. But, being based on averaged quantities, this method could not reproduce the unsteady and 3D effects of the problem, like phase lag in temperature oscillations between two points, which can generate important stresses. Benefiting from advances in computer power and turbulence modelling, a new methodology is now applied, that allows to take these effects into account. The CFD tool Code_Saturne, developped at EDF, is used to solve the fluid flow using an unsteady L.E.S. approach. It is coupled with the thermal code Syrthes, which propagates the temperature fluctuations into the wall thickness. The instantaneous temperature field inside the wall can then be extracted and used for structure mechanics computations (mainly with EDF thermomechanics tool Code_Aster). The purpose of this paper is to present the application of this methodology to the simulation of a straight T-junction mock-up, similar to the Residual Heat Remover (RHR) junction found in N4 type PWR nuclear plants, and designed to study thermal striping and cracks propagation. The results are generally in good agreement with the measurements; yet, in certain areas of the flow, progress is still needed in L.E.S. modelling and in the treatment of instantaneous heat transfer at the wall.

Verification and Validation of the Numerical Simulation of Transverse Injection Jets using Grid Convergence Index (GCI 를 이용한 수직분사제트 수치모사의 검증 및 확인)

  • 원수희;정인석;최정열
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.53-62
    • /
    • 2006
  • Two-dimensional steady flowfields generated by transverse injection jets into a supersonic mainstream are numerically simulated. Fine-scale turbulence effects are represented by a k-${\omega}$ SST two-equation closure model which includes $y^+$ effects on the turbulence model. Solution convergence is evaluated by using Grid Convergence Index(GCI), a measure of uncertainty of the grid convergence. Comparison is made with experimental data and other turbulence models in term of surface static pressure distributions, the length of the upstream separation region, and the penetration height. Results indicate that the k-${\omega}$ SST model correctly predicts the mean surface pressure distribution and the upstream separation length for low static pressure ratios. However, the numerical predictions become less consistent with experimental results as the static pressure ratio increases. All these results are taken within 1% error band of grid convergence.

PERFORMANCE ASSESSMENT OF THE RANS TURBULENCE MODELS IN PREDICTION OF AERODYNAMIC NOISE FOR AIR-CONDITIONER INDOOR UNIT (에어컨 실내기의 공력소음 예측을 위한 RANS 난류모델의 성능 평가)

  • Min, Y.H.;Kang, S.;Hur, N.;Lee, C.;Park, J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.81-86
    • /
    • 2012
  • The objective of the present study is to investigate the effects of various turbulence models on the aerodynamic noise of an air-conditioner (AC) indoor unit. The results from URANS (unsteady Reynolds-averaged Navier-Stokes) simulations with the standard k-$\varepsilon$, k-$\omega$ shear stress transport (SST) and Spalart-Allmaras (S-A) turbulence models were analyzed and compared with the noise data from the experiments. The frequency spectra of the far-field acoustic pressure were computed using the Farrasat equation derived from the Ffowcs Williams-Hawkings (FW-H) equation based on the acoustic analogy model. Two fixed fan casings and the rotating cross-flow fan were used as the source surfaces of the dipole noise in the Farrasat equation. The result with the standard k-$\epsilon$ model showed a much better agreement with the experimental data compared to the k-w SST and S-A models. The differences in the pressure spectra from the different turbulence models were discussed based on the instantaneous vorticity fields. It was found that the over-estimated power spectra with the k-w SST and S-A models are related to the emphasized small-scale vortices produced with these models.

CEO's Innovation DNA and Innovation : Fit of Environment (경영자 혁신DNA와 혁신 : 환경 적합성)

  • Kim, Seung Ho;Huh, Moo Yul
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.1
    • /
    • pp.95-110
    • /
    • 2015
  • Most innovation related theories including entrepreneurship theory regard the CEO's innovative competencies as the starting point of innovation. The study was investigated the relationship between CEO's innovation DNA and Innovation and the effects of environmental fit in their relation. For the empirical test, the sample was collected from 110 manufacturing companies in Daegu and Gyeongbook region. The results as follows: First, Innovation DNA has generally significant positive effect on innovation. The effect of discovery DNA is stronger than operating DNA to the product innovation, but the operating DNA stronger than the discovery DNA to the process innovation. The fit between CEO's innovative DNA and exogenous environmental turbulence make a strength innovation. The supplementary fit between discovery DNA and technology turbulence and complementary fit between discovery DNA and market turbulence reinforce product innovation. Process innovation were strengthen by the complementary fit between operating DNA and market turbulence.

  • PDF