DOI QR코드

DOI QR Code

Analyses of International Standard Problem ISP-47 TOSQAN experiment with containmentFOAM

  • Received : 2023.07.05
  • Accepted : 2023.10.29
  • Published : 2024.02.25

Abstract

The ISP-47 TOSQAN experiment was analyzed with containmentFOAM which is an open-source CFD code based on OpenFOAM. The containment phenomena taking place during the experiment are gas mixing, stratification and wall condensation in a mixture composed of steam and non-condensable gas. The k-ω SST turbulence model was adopted with buoyancy turbulence models. The wall condensation model used is based on the diffusion layer approach. We have simulated the full TOSQAN experiment which had a duration 20000 s. Sensitivity studies were conducted for the buoyancy turbulence models with SGDH and GGDH and there were not significant differences. All the main features of the experiments namely pressure history, temperature, velocity and gas species evolution were well predicted by containemntFOAM. The simulation results confirmed the formation of two large flow stream circulations and a mixing zone resulting by the combined effects of the condensation flow and natural convection flow. It was found that the natural convection in lower region of the vessel devotes to maintain two large circulations and to be varied the height of the mixing zone as result of sensitivity analysis of non-condensing wall temperature. The computational results obtained with the 2D mesh grid approach were comparable to the experimental results.

Keywords

Acknowledgement

We would like to thank to Dr. Emmanuel Porcheron (IRSN, France) for providing the ISP-47 TOSQAN experimental data and test reports.

References

  1. H. Dimmelmeier, J. Eyink, M.A. Movahed, Computational validation of the EPR™ combustible gas control system, Nucl. Eng. Des. 249 (2012) 118-124.
  2. B.R. Sehgal, Nuclear Safety in Light Water Reactors, first ed., Academic Press, 2012.
  3. F. Dabbene, J. Brinster, D. Abdo, E. Porcheron, P. Lemaitre, G. Mignot, R. Kapulla, S. Paranjape, M. Kamnev, A. Khizbullin, Experimental activities on stratification and mixing of a gas mixture under the conditions of a severe accident with intervention of mitigating measures performed in the ERCOSAM-SAMARA projects, in: International Congress on Advances in Nuclear Power Plants, Nice, France, May 3-6, 2015.
  4. E. Studer, J.P. Magnaud, F. Dabbene, I. Tkatschenko, International standard problem on containment thermal-hydraulics ISP47: step 1-Results from the MISTRA exercise, Nucl. Eng. Des. 237 (2007) 536-551.
  5. C. Kaltenbach, E. Laurien, CFD simulation of spray cooling in the model containment Thai, Nucl. Eng. Des. 328 (2018) 359-371.
  6. B.U. Bae, J.B. Lee, Y.S. Park, J. Kim, K.H. Kang, Integral effect test for steam line break with coupling reactor coolant system and containment using ATLAS-CUBE facility, Nucl. Eng. 53 (2021) 2477-2487.
  7. M. Ishigaki, S. Abe, Y. Sibamoto, T. Yonomoto, Experimental investigation of density stratification behavior during outer surface cooling of a containment vessel with the CIGMA facility, Nucl. Eng. Des. 367 (2020), 110790.
  8. D. Paladino, et al., Outcomes from the EURATOM-ROSATOM ERCOSAM SAMARA projects on containment thermal-hydraulics for severe accident management, Nucl. Eng. Des. 308 (2016) 103-114.
  9. D. Paladino, R. Kapulla, S. Paranjape, S. Suter, C. Hug, M.S. Chae, M. Andreani, PANDA experimental database and further needs for containment analyses, Nucl. Eng. Des. 404 (2023), 112173.
  10. CSNI International Standard Problems, ISP, Brief Descriptions, 1975-1999.
  11. J. Malet, E. Porcheron, J. Vendel, OECD International Standard Problem ISP-47 on containment thermal-hydraulics-Conclusions of the TOSQAN part, Nucl. Eng. Des. 240 (2010) 3209-3220.
  12. International Csni, Standard Problem ISP-47 on Containment Thermal Hydraulics, Final report, 2007.
  13. S. Kelm, H. Muller, H.J. Allelein, A Review of the CFD modeling progress triggered by ISP-47 containment thermal hydraulics, Nucl. Sci. Eng. 193 (2019) 63-80.
  14. J. Vendel, P. Cornet, J. Malet, E. Porcheron, H. Paill'ere, M.L. Caron-Charles, E. Studer, K. Fischer, H.J. Allelein, ISP 47 'Containment thermal hydraulics' Computer codes exercise based on TOSQAN, MISTRA and Thai experiments, in: EUROSAFE Congress, Berlin, Germany, 2002.
  15. S. Kelm, M. Kampili, X. Liu, A. George, D. Schumacher, C. Druska, S. Struth, A. Kuhr, L. Ramacher, H.J. Allelein, K.A. Prakash, G.V. Kumar, The tailored CFD package 'containmentFOAM' for analysis of containment atmosphere mixing, H2/CO Mitigation and Aerosol Transport, Fluids 6 (2021) 1-21.
  16. M. Kampili, G. Vijaya Kumar, S. Kelm, K. Arul Prakash, H.J. Allelein, CFD simulations of stratified layer erosion in MiniPanda facility using the tailored CFD solver containmentFOAM, Int. J. Heat Mass Tran. 178 (2021), 121568.
  17. N.C. Markatos, M.R. Malin, G. Cox, Mathematical modeling of buoyancy-induced smoke flow in enclosures, Int. J. Heat Mass Tran. 25 (1982) 63-75.
  18. B.J. Daly, F.H. Harlow, Transport equations in turbulence, Phys. Fluids 13 (1970) 2634-2649.
  19. C.R. Wilke, A viscosity equation for gas mixtures, J. Chem. Phys. 18 (1950) 517-519.
  20. G.V. Kumar, L.M.F. Cammiade, S. Kelm, K.A. Prakash, W. Rohlfs, Implementation of a CFD model for wall condensation in the presence of non-condensable gas mixtures, Appl. Therm. Eng. 187 (2021), 116546.
  21. B.A. Kader, Temperature and concentration profiles in fully turbulent boundary layers, Int. J. Heat Mass Tran. 24 (1981) 1541-1544.
  22. E.N. Fuller, K. Ensley, J.C. Giddings, Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections, J. Phys. Chem. 73 (1969) 3679-3685.
  23. ANSYS Meshing User's Guide, Release 13.0, November 2010, pp. 101-117.
  24. J. Malet, E. Porcheron, J. Vendel, Filmwise condensation applied to containment studies: conclusions of the TOSQAN air-steam condensation tests, in: International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France, October 2-6, 2005.
  25. M. Andreani, D. Paladino, T. George, Simulation of basic gas mixing tests with condensation in the PANDA facility using the Gothic code, Nucl. Eng. Des. 240 (2010) 1528-1547.
  26. D. Paladino, R. Zboray, P. Benz, M. Andreani, Three-gas mixture plume inducing mixing and stratification in a multi-compartment containment, Nucl. Eng. Des. 240 (2010) 210-220.