• Title/Summary/Keyword: turboprop aircraft

Search Result 34, Processing Time 0.024 seconds

Numerical Analysis of Stall Characteristics for Turboprop Aircraft (터보프롭 항공기의 실속 특성 수치해석)

  • Park, Young Min;Chung, Jin Deog
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • Numerical simulations were performed to study the stall characteristics of turboprop aircraft. Stall characteristics were qualitatively investigated using the computational results of various configurations based on the combinations of propeller and high lift device. For the analysis of stall characteristics, three-dimensional Navier-Stokes solver with Spalart-Allmaras turbulence model was used and the relative motion between propeller and wing was simulated using sliding mesh technique. For the cruise configurations, major flow separation was occurred at the fuselage/wing fairing and the separation was reduced under propeller slipstream condition. For the high lift device configuration without propeller, major flow separation was occurred at the outboard side of nacelle. With rotating propeller, early stall onset due to low relative velocity and high effective angle of attack was observed on the outboard wing section. Regarding rotating direction of propeller, inboard-down direction was preferred due to the stall delay effect of propeller slipstream.

Performance Simulation of Turboprop Engine using SIMULINK$\circledR$ (SIMULINK$\circledR$를 이용한 터보프롭 엔진의 성능모사)

  • 공창덕;노흥석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.44-50
    • /
    • 2001
  • After modeling an aircraft turboprop engine using SIMULINK$\circledR$, performance simulation of PT6A-62 engine, which is main power plant of KT-1, was performed. For validation, performance parameters of the SIMULIINK model were compared with the simulated results by GASTURB program. It was confirm that the results by the SIMULINK model were well agreed with those by GASTURB within 1.07%, It was assumed that installation losses were bleed-air exteraction with a range from 0% to 5%, and power for accessories with a range from 0 to 20hp. In this investigation, it was found that the shafthorsepower was decreased by maxium 0.68%, but specific fuel consumption ratio was not effected nearly by these losses.

  • PDF

The Trend and forecast of Regional Aircraft market (세계 중형 항공기 시장 동향과 전망)

  • Chang, Tae-Jin
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.11-19
    • /
    • 2009
  • Though the regional airlines have grown consistently with world's economic recovery after 2001, now the future of them is uncertain from the current economic depression since 2007. In the regional aircraft industry, there have been two main trends that larger airplanes and regional jets inroad the market. But, the situational change including radical rise of oil price and worldwide recession induces the managerial damage of airlines and it makes them doubt about the regional jet which has been the main stream of regional aircraft after the success of the ERJ-145 in 1990s. Still, most of being developed or planed regional aircrafts choose turbo fan, the future demands of turboprop increase and it becomes a good alternative of future regional aircraft in many market forecasts. Thus in this paper, current situation and tendency of regional aircraft market are investigated with various market forecast reports.

  • PDF

A Study on Engine Health Monitoring using Linear Gas Path Analysis for Turboprop Engine (선형 GPA 기법을 이용한 터보프롭 엔진의 성능진단에 관한 연구)

  • 공창덕;신현기;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.93-103
    • /
    • 1999
  • The steady-state performance analysis program for turboprop engine which was used for a small, middle industrial aircraft and a basic trainer aircraft was developed and linear Gas Path Analysis method was applied to Engine Health Monitoring for Turboprop engine. This program was compared with TURBOMARCH program which is well known with performance and power according to flight Mach No. at the standard atmospheric condition to prove a steady-state performance analysis program. From the result, inlet, exit temperature and pressure of each component had error within 3% and especially power according to flight Mach No. had error within 2.4% so that this program could be assured. To make sure if linear Gas Path Analysis is reasonable four cases were selected. The first is the case that fouling is occurred in compressor only. The second is the case that fouling is occurred in compressor and erosion is occurred in turbine. The third is the case that erosion is occurred in both compressor and turbine and power turbine at the same time. Finally, the case that fouling and erosion are occurred in compressor, compressor turbine and power turbine was selected. Different parameters were selected impartially among the independent parameters so that the effect of measurement parameter selection was observed. From the result, the more measurement parameters the smaller RMS error and even though the number of measurement parameters was the same, the RMS error was obtained differently according to which measurement parameters were selected. The case using eight instrument parameters of case IV-4 had small error comparably and was economic and it was important to select optimal number of measurement and optimal measurement parameters.

  • PDF

The Study on Performance Model of Open Rotor Engine for Next Generation Aircraft (차세대 항공기용 Open Rotor 엔진 성능 모델 연구)

  • Choi, Won;Kim, Ji-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.842-849
    • /
    • 2011
  • Open Rotor Engine is one of the several new technologies offering potential solution for the next generation aircraft. The coupling of ultra high bypass ratio and aerodynamically advanced fan blade design allow the open rotor engine to achieve and advantage in fuel consumption. The open rotor engine does have more thrust lapse than the general high bypass turbofan. The open rotor engine performance model was analyzed using a reference data based on the GE36 which was designed and tested data at which time a F404 turbojet was used as the core. The performance model of open rotor engine was verified by referred test data and was evaluated to be properly constructed, through the comparison of recent Next generation turboprop engine performance.

  • PDF

Design on High Efficiency and Light Composite Propeller Blade of Regional Aircraft (중형항공기급 고효율 경량화 복합재 프로펠러 블레이드 설계 연구)

  • Kong, Chang-Duk;Lee, Kyung-Sun;Park, Hyun-Bum;Choi, Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.253-258
    • /
    • 2012
  • In this study, designs of the high efficiency composite propeller blade for a high speed turboprop aircraft, which will be used for a next generation regional commercial aircraft in Korea, are performed. Both the vortex theory and the blade element theory are used for preliminary aerodynamic design and performance analysis of the propeller. Then the aerodynamic design result is confirmed through performance analysis using a commercial CFD code, ANSYS. The carbon/epoxy composite materials is used, and the skin-spar-foam sandwich type structure is adopted for improvement of lightness and structural stability. Finally, it is investigated that the proposed propeller blade has high efficiency and structural safety through both aerodynamic and structural analysis and experimental test of a prototype propeller blade.

  • PDF

Technical Trends for Small Aircraft Propulsion (소형항공기 추진기관 기술동향)

  • Kim, Keun-Bae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Technical trends of propulsion system for small aircraft are investigated. Currently, most small aircraft are equipped with piston engine, turboprop and turbofan engines, and the technology development is going continuously. For piston engines, new diesel engines are arising besides gasoline engine. The diesel engines use relatively low-cost and easy to get fuel(Jet A), so the demand for small aircraft is getting increased, and new engines with high reliability and efficiency are being developed. For gas turbine engines, application of small turbofan is getting increased for newly arising VLJ market and the engine demand will be rapidly increased in the future. On the other hand, some electric propulsions without fossil fuels are being developed without high cost of fuel and environmental effects. In the future, propulsion system for small aircraft will be developed having enhancement of performance and efficiency with higher reliability and safety.

  • PDF

Improvement on Performance Simulation Using Component Maps of Aircraft Gas Turbine Obtained from System Identification (시스템 식별로 구한 구성품 성능선도를 이용한 개선된 가스터빈 성능해석 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.96-103
    • /
    • 2004
  • Sought a set of component performance lines from experiment data or some data supplied in the engine manufacturer to improve the traditional scaling method and suggested a map scaling method that construct component performance lines newly using polynomial equations of MATLAB program. In this study, applied technique that is proposed newly to PT6A-62 that verified technique that is proposed newly using experiment data of small. size turboshaft engine, and is actuality aircraft engine. In identification of the component maps of the turboprop engine, the simulated performance using the proposed scaling method was compared with the real engine performance data and the performance using the traditional scaling method.

Ground Test of Smart UAV Propulsion System (스마트무인기 추진장치 지상시험)

  • Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.533-536
    • /
    • 2009
  • The power control system of Smart UAV is similar to the propeller pitch governing concept of turboprop aircraft. The pilot inputs the engine power directly and the pitch governor controls the rotational speed of proprotor. In this paper, the engine status data from ground test of Smart UAV, such as the relationship of PLA vs. Gas generator speed and power are compared with the result of engine performance calculation program.

  • PDF

Numerical Simulation of Propeller Slipstream Effect on Wing Aerodynamic Characteristics (프로펠러 후류 효과로 인한 날개의 공력 특성 수치해석)

  • Park, Y.M.;Kim, C.W.;Chung, J.D.;Lee, H.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.202-205
    • /
    • 2011
  • A rotating propeller of turboprop aircraft gives much effect on the aerodynamic characteristics of wing such as lift, moment and stall. Specially, a rotating propeller changes the lift and moment characteristics when aircrafts are in landing or take-off condition. In the present paper, 3-dimensional Navier-Stokes simulations for the interaction of propeller and wing were carried out. For rotating propeller, unsteady sliding mesh method was used to simulate a relative motion. For the power effect analysis in landing and take off configurations, double slotted flap was also considered and the aerodynamic characteristics were investigated. It was shown that the propeller slipstream enhanced the lift slope including maximum lift and this enhancement was more dominant with high lift device.

  • PDF