Numerical Analysis of Stall Characteristics for Turboprop Aircraft

터보프롭 항공기의 실속 특성 수치해석

  • 박영민 (한국항공우주연구원 중형기체계설계팀) ;
  • 정진덕 (한국항공우주연구원 중형기체계설계팀)
  • Received : 2012.09.17
  • Accepted : 2012.11.01
  • Published : 2012.11.01

Abstract

Numerical simulations were performed to study the stall characteristics of turboprop aircraft. Stall characteristics were qualitatively investigated using the computational results of various configurations based on the combinations of propeller and high lift device. For the analysis of stall characteristics, three-dimensional Navier-Stokes solver with Spalart-Allmaras turbulence model was used and the relative motion between propeller and wing was simulated using sliding mesh technique. For the cruise configurations, major flow separation was occurred at the fuselage/wing fairing and the separation was reduced under propeller slipstream condition. For the high lift device configuration without propeller, major flow separation was occurred at the outboard side of nacelle. With rotating propeller, early stall onset due to low relative velocity and high effective angle of attack was observed on the outboard wing section. Regarding rotating direction of propeller, inboard-down direction was preferred due to the stall delay effect of propeller slipstream.

프로펠러와 고양력장치를 장착한 터보프롭 항공기에 대한 실속 특성 분석을 위해 수치 해석을 수행하였다. 항공기의 실속 특성은 프로펠러와 고양력 장치의 장착 조합에 따른 형상별 전산해석 결과를 통해 정성적으로 분석하였다. 실속 특성 해석은 Spalart-Allmaras 난류 모델을 기반으로 한 3차원 Navier-Stokes 방정식 해법을 이용하였으며 프로펠러의 회전은 슬라이딩 격자기법을 이용하여 모사하였다. 분석 결과 순항 형상의 경우 동체/날개 페어링에서 주요 유동박리가 발생하며 프로펠러 후류로 인해 점차 감소함을 알 수 있었다. 고양력장치를 장착한 경우 나셀 바깥쪽에서 주요 유동박리 현상이 발생하였고 프로펠러가 회전하는 경우에도 상대속도 감소와 유효 받음각 증가로 나셀 바깥쪽 날개 부분은 조기에 실속에 잠김을 알 수 있었다. 프로펠러는 날개의 inboard에서 하강하는 회전 방향이 프로펠러 후류로 인한 실속 지연 측면에서 유리함을 알 수 있었다.

Keywords

References

  1. Chung, J. D., "Summery of Propeller Slipstream Effect," KARI-AESD-TM-2010-004, 2010.
  2. Huhnd, M., and Schmid-Goller, S., "Aspect of Low Speed Wind Tunnel Testing on an A400M Model with Propeller Simulation," Notes on Numerical Fluid Mechanics, Vol. 77. 2002.
  3. Carl, L. G. Jr., Takallu, M. A., and Applin, Z. T., "Aerodynamic Characteristics of a Propeller-powered High-Lift Semispan Wing," NASA TM 4541, 1994.
  4. Custers, L. G. M., "Propeller-wing Interference Effects at Low Speed Conditions," NLR TP 96312, 1996.
  5. Catalano, F. M., "On the Effects of an Installed Propeller Slip-stream on Wing Aerodynamic Characteristics," Acta Polytechnica, Vol. 44, No. 3, 2004.
  6. Veldhuis, L. L. M., "Review of Propeller-Wing Aerodynamic Interference," 24th International Congress of the Aeronautical Sciences, 2004.
  7. Veldhuis, L. L. M., "Propeller Wing Aerodynamic Interference", Delft University Of Technology, 2005.
  8. Waller, G., "CFD Prediction of Stability Derivatives of a Turboprop Aircraft Using a Cartesian Grid Based Euler Code," 22th International Congress of the Aeronautical Sciences, 2002.
  9. Park, Y. M., Kim C. W., Chung, J. D., and Lee, H. C., "Numerical Simulation of Propeller Slipstream Effect on Wing Aerodynamic Characteristics," KSCFE Spring Conference, 2011.
  10. Park, Y. M., Kim C. W., Chung, J. D., and Lee, H. C., "Numerical Study of Propeller and High Lift Device Aerodynamic Interference," Journal of KSCFE, Vol. 16, No. 4, 2011.