• Title/Summary/Keyword: tunnel crown settlement

Search Result 70, Processing Time 0.027 seconds

Case Studies on Applications of Convergence Measurement Systems at the Stages of Tunnel Construction and Maintenance (터널 시공 및 유지관리 단계 내공변위 계측시스템 적용사례 연구)

  • Lee, Dae-Hyuck;Han, Il-Yeong;Kim, Ki-Sun;Jin, Suk-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.59-69
    • /
    • 2000
  • Three-dimensional total station system which integrated the instrument with Target Pin and TEMS 3D software developed by SKEC R&D center was applied to a tunnel excavation for monitoring of convergence and crown settlement. The efficiency of the system was proved as the result in the aspects of exact monitoring and prediction of rock conditions ahead of the face. To monitor the behavior of tunnel lining at the maintenance stage, DOCS system was applied to the subway tunnel section. Such many effects as the vibration of sensors, verification of the system efficiency, the effect of test trains operation, the variation of temperature and the effect of high voltage was checked. Thus the management scheme for tunnel maintenance was laid out as a proposal.

  • PDF

Characteristics of Tunnel Convergence Behaviour based on Variation of Rock Mass Rating (암반 등급 변화에 따른 터널 내공 변위 거동 특설)

  • Kim, Kwang-Yeom
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.545-553
    • /
    • 2008
  • Face mapping and displacement monitoring during tunnel construction are the most influential information for the stability assessment of ground and around structures. Especially, the result of face mapping and displacement analysis is essential to the excavation and support design in NATM which is based on the drilling and blasting. However, there have not been so many studies to put those useful information into practice for decision-making process during construction. The study reviewed the tunnel behaviour based on the RMR rating and displacement monitoring when the geological condition of rock mass varies inevitably. The study analysed the crown settlement using convergence equation in order to compensate the disparity induced by the location and time of measurement and found a distinct relation between the geological condition and the line of influence. As a result of analysing the various parameters related to the tunnel convergence according to the geological condition, the study suggested the basic knowledge about the relation between face mapping and displacement behaviour of tunnel.

A Study on the Three Dimensional Finite Element Analysis for the Tunnel Reinforced by Umbrella Arch Method (Umbrella Arch 공법이 적용된 터널의 3차원 유한요소 해석에 관한 연구)

  • 김창용;배규진;문현구;최용기
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.209-225
    • /
    • 1998
  • Recently, Umbrella Arch Method(UAM), one of the auxiliary techniques for tunnelling, is used to reinforce the ground and improve stability of tunnel face. Because UAM combines the advantages of a modern forepoling system with the grouting injection method, this technique has been applied in subway, road and utility tunnel sites for the last few years in Korea. Also, several research results are reported on the examination of the roles of inserted pipes and grouted materials in UAM. But, because of its empirical design and construction methodology, more qualitative and systematic design sequences are needed. Therefore, above sequences using numerical analysis are proposed and, the effects of some design parameters were studied in this research. In order to acco,mplish these objects, first, the roles of pipe and grouting materials, steel-rib and the others in ground improving mechanism of UAM are clarified. Second, the effects of design parameters are investigated through parametric studies. Design parameters are as follows; 1) ground condition, 2) overburden, 3) geometrical formulation of pipes, 4) grouting region and 5) characteristics of pipes.

  • PDF

A Study on the Estimation of Load Distribution Factors Considering Excavation Methods and Initial Stress Conditions (굴착방법과 초기지압 조건을 고려한 하중분배율의 산정 연구)

  • Park, Yeon-Jun;Ryu, Il-Hyung
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.192-204
    • /
    • 2011
  • In this study, 3-D analyses were conducted while taking every construction stage into account. Then 2-D analyses were conducted which yield the same results with the 3-D results. The crown settlement normalized by the ultimate value was compared during the process to overcome the discrepancy caused by different dimensions. When a bench or a core is left uncut to give extra support to the face and eventually the whole excavation boundary, this extra supporting effect also has to be included in the analysis. In this study, this effect is also implemented in terms of the load distribution factor. When the length of the bench is very short compared to the diameter of the tunnel in such cases as in short bench cut or in mini-bench cut, the supporting effect of the face does not disappear even after the bench is completely excavated and supported since the face is still too close to the point of interest. The 4th load distribution factor was defined to stand for the advance of the face after the completion of the excavation cycle. The 4th load distribution factor turned out to be very useful in determining the load distribution factors when a tunnel is excavated by bench cut with various bench lengths under different initial conditions.

Back Analysis of Field Measurements Around the Tunnel with the Application of Genetic Algorithms (유전자 알고리즘을 이용한 터널 현장 계측 결과의 역해석)

  • Kim Sun-Myung;Yoon Ji-Sun;Jun Duk-Chan;Yoon Sang-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.69-78
    • /
    • 2004
  • In this study, the back analysis program was developed by applying the genetic algorithm, one of artificial intelligence fields, to the direct method. The optimization process which has influence on the efficiency of the direct method was modulated with genetic algorithm. On conditions that the displacement computed by forward analysis for a certain rock mass model was the same as the displacement measured at the tunnel section, back analysis was executed to verify the validity of the program. Usefulness of the program was confirmed by comparing relative errors calculated by back analysis, which is carried out under the same rock mass conditions as analysis model of Gens et at (1987), one of back analysis case in the past. We estimated the total displacement occurring by tunnelling with the crown settlement and convergence measured at the working faces in three tunnel sites of Kyungbu Express railway. Those data measured at the working face are used for back analysis as the input data after confidence test. As the results of the back analysis, we comprehended the tendency of tunnel behaviors with comparing the respective deformation characteristics obtained by the measurement at the working face and by back analysis. Also the usefulness and applicability of the back analysis program developed in this study were verified.

Field Measurements of Ground Movements Around Tunnel (현장계측에 의한 터널주변지반의 변위연구)

  • 홍성완;배규진
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-54
    • /
    • 1985
  • Generally, ground settlements and lateral displacements are accompanied by underground excavation associated with open-cut or tunnling. These ground movements cause a harmful influence upon nearby super.structures and sub-structures. Occasionally, the ground movements may pose serious problems as the function of the nearby structures may be disrupted. Therefore, prior to the subway construction in an urban area, it is necessary to identify the causes of ground settlements and estimating the extent St the magnitude of ground movements since any potential damage to the nearby structures such as gas lines, water mains, high buildings and cultural assets must be assessed. The research was performed mainly on ground movements such as surface settlements, lateral displacements, subsurface settlements and crown settlements to predict the maximum settlement and settlement zone, and to identify the causes of ground settlements in NATM sections of Busan subway. As a result, it was found that lateral distribution of settlements could be approximated reasonably by a Gaussian normal probability curve and longitudinal distribution of settlements by a cumulative Gaussian probability curve, and that the early closure of temporary invert was very important to minimize ground settlements.

  • PDF

Effect of a frontal impermeable layer on the excess slurry pressure during the shield tunnelling in the saturated sand (포화 사질토에서 전방 차수층이 쉴드터널 초과 이수압에 미치는영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.347-370
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, when the slurry pressure would be properly adjusted. Low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. In tests slurry pressure was increased until the slurry flowed out of the ground surface or the ground fails. Location and dimension of the impermeable layer were varied. As results, the maximum and the excess slurry pressure in sandy ground were linearly proportional to the cover depth. Larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0 ~ 1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5 ~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

Stability evaluation of room-and-pillar underground method by 3D numerical analysis model (3차원 수치해석모델을 이용한 주방식 지하공간의 안정성 평가)

  • Byung-Yun, Kang;Sanghyuk, Bang;Choong-Ky, Roh;Dongkwan, Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • In this study, the stability of the room-and-pillar underground method was investigated using numerical analysis method. In-situ geotechnical investigation was conducted, and a supporting pattern was selected based on the geotechnical investigation data. For the supporting pattern, Type-1, 2, 3 were selected for each ground condition. A 3D numerical analysis model was developed for effective simulation as the room-and-pillar underground method consist of a pillar and room. As a review of numerical analysis, it was confirmed that the crown settlement, convergence, shotcrete and rock bolt were all stable in all supporting patterns. As a result of the analysis by the construction stage, it was confirmed that excessive stress was generated in the room when the construction stage of forming pillar. So, precise construction is required during the actual construction stage of the pillar formation.

Equivalent Design Parameter Determination for Effective Numerical Modeling of Pre-reinforced Zones in Tunnel (터널 사전보강 영역의 효과적 수치해석을 위한 등가 물성치 결정 기법)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2006
  • Although various methods for effective modeling of pre-reinforced zones have been suggested for numerical analysis of large section tunnels, tunnel designers refer to empirical cases and literature reviews rather than engineering methods because ones who use commercial programs are unfamiliar with a macro-scale approach in general. Therefore, this paper suggests a simple micro-scale approach combined with the macro-scale approach to determine equivalent design parameters for effective numerical modeling of pre-reinforced zones in tunnel. This new approach is to determine the equivalent stiffness of pre-reinforced zones with combination of ground, bulb, and steel in series or/and parallel. For verification, 3-D numerical results from the suggested approach are compared with those of a realistic model. The comparison suggests that two cases make best approximation to a realistic solution: One is related to the series-parallel stiffness system (hereafter SPSS) in which bulb and steel are coupled in parallel and then connected to the ground in series, and the other is the series stiffness system (hereafter SSS) in which only bulb and steel are coupled in series. The SPSS is recommended for stiffness calculation of pre-reinforced zones because the SSS is inconvenient and time-consuming. The SPSS provides slightly bigger vertical displacement at tunnel crown in weathered rock than other cases and give almost identical results to a realistic model for horizontal displacement at tunnel spring line and ground surface settlement. Displacement trends on weathered rock and weathered soil are similar. The SPSS which is suggested in this paper represents the behavior mechanism of pre-reinforced area effectively.

  • PDF

The Ruling System of Silla to Gangneung Area Judged from Archaeological Resources in 5th to 6th Century (고고자료로 본 5~6세기 신라의 강릉지역 지배방식)

  • Shim, Hyun Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.3
    • /
    • pp.4-24
    • /
    • 2009
  • This paper examined archaeological resources that discuss how Silla entered the Gangneung area, the coastal region along the East Sea that has been excavated most actively. Silla expanded its territories while organizing the its system as an ancient state and acquired several independent townships in various regions, stretching its forces to the East Sea area faster than any other ancient states of the time. In particular, many early relics and heritages of Silla have been found in Gangneung, the center of the East Sea area. Many archaeological resources prove these circumstances of that time and provide brief texts that are valuable for our interpretation of historical facts. In this respect, it was possible for me to examine these resources to answer my question as to why early relics and heritages of Silla are found in the Gangneung area. Based on my research on Silla's advancement into the Gangneung area, I have acquired the following results: How did Silla rule this area after conquering Yeguk in the Gangneung area? After conquering the Gangneung area, Silla attempted an indirect ruling at first. Later, Silla adopted a direct ruling system. I divided the indirect ruling period into two phases: introduction and settlement. In detail, Silla's earthenware and stone chamber tombs first appeared in Hasi-dong in the fourth quarter of the 4th Century and the tombs spread to Chodang-dong in the second quarter of the 5th Century. A belt with dragon pattern openwork, which seems to be from the second quarter of the 5th Century, was found to tell us that the Gangneung region began receiving rewards from Silla during this time. Thus, the period from the fourth quarter of the 4th Century to the second quarter of the 5th Century is designated as the 1st Phase (Introduction) of indirect ruling in terms of aechaeological findings. This is when Silla was first advanced to the Gangneung area and tolerated independent administration of the conquered. In the third and fourth quarters of the 5th Century, old mound tombs appeared and burials of relics that symbolized power emerged. In the third quarter of the 5th Century, stone chamber tombs were prevalent, but wooden chamber tombs, stone mounded wooden chamber tombs, and lateral entrance stone chamber tombs began to emerge. Also, tombs that were clustered in Hasi-dong and Chodang-dong began to scatter to Byeongsan-dong, Yeongjin-ri, and Bangnae-ri nearby. Steel pots were the symbol of power that emerged at this time. In the fourth quarter of the 5th Century, stone chamber tombs were still dominating, but wooden chamber tombs, stone mounded wooden chamber tombs, and lateral entrance stone chamber tombs became more popular. More crowns, crown ornaments, big daggers, and belts were bestowed by Silla, mostly in Chodang-dong and Byeongsan-dong. The period from the third quarter to the fourth quarter of the 5th Century was designated as the 2nd Phase (Settlement) of indirect ruling in terms of aechaeological findings. At this time, Silla bestowed items of power to the ruling class of the Gangneung area and gave equal power to the rulers of Chodang-dong and Byeongsan-dong to keep them restrained by each other. However, Silla converted the ruling system to direct ruling once it recognized the Gangneung area as the base of its expedition of conquest to the north. In the first quarter of the 6th Century, old mound tombs disappeared and small/medium-sized mounds appeared in the western inlands and the northern areas. In this period, the tunnel entrance stone chamber tombs were large enough for people to enter with doors. A cluster of several tunnel entrance stone chamber tombs was formed in Yeongjin-ri and Bangnae-ri at this time, probably with the influence of Silla's direct ruling. In the first quarter of the 6th Century, Silla dispatched officers from the central government to complete the local administration system and replaced the ruling class of Chodang-dong and Byeongsan-dong with that of Silla-friendly Yeonjin-ri and Bangnae-ri to reorganize the local administration system and gain full control of the Gangneung area.