• Title/Summary/Keyword: tuning rule

Search Result 125, Processing Time 0.028 seconds

Adaptive Fuzzy Controller for Speed Control of Servo Motor (서보 전동기 속도 제어를 위한 적응 퍼지 제어기)

  • Son, Jae-Hyun;Roh, Cheung-Min;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.947-949
    • /
    • 1995
  • In this paper, model reference adaptive fuzzy controller (MRAFC) was proposed in order to overcome the difficulty of extracting rules and defects of the adaptation performance in the FLC. MRAFC comprised inner feedback loop consisting of the FLC and plant, and outer loop consisting of an adaptation mechanism which is designed for tuning a control rule of the FLC. A reference-model was used for design criteria of a fuzzy controller which characterizes and quantizes the control performance required in the overall control system. Tuning control rules of FLC is performed by the adaptation mechanism. For this, the fuzzy model for tuning the contorl rules is designed in accordance with the feature of error information. And DC servo motor was selected for case study of actual industrial plant and tested on various loads.

  • PDF

A Study on the Design of Simple Auto-tunig PID Controller (단순한 자동동조 PID제어기의 설계에 관한 연구)

  • Seul, Nam-O;Shin, Man-Sic;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.795-797
    • /
    • 1995
  • In this paper, we present a simple auto-tuning PID controller using genetic algorithms. The basic idea of the scheme is to parameterize a Ziegler-Nichols-like tuning formula by a single parameter ${\alpha}$, then to use GA to select optimal tuning parameter. Also, simple rule mechanisms make the controller adapt against large variations in parametric and dynamics uncertainties in the plant. These scheme lead to improved performance of the transient and steady state behavior of the closed loop system, including processes with long delay-time and nonminimum phase systems.

  • PDF

Digital implementation of PID autotuner (PID 자동동조기의 디지틀 구현)

  • 이상정;김인중;홍석민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.311-316
    • /
    • 1991
  • This paper deals with designing the PID autotuner. The system parameters are identified using the relay control, where the unidirectional relay with hysteresis is adopted. The digital PID tuning rule on Nyquist plot is derived, and the statistical wordlength is adopted for the coefficient wordlength. The experimental results of temperature control exhibit the satisfactory performance and the validity of the derived statistical wordlength.

  • PDF

An Auto-Tunning Fuzzy Rule-Based Visual Servoing Algorithm for a Alave Arm (자동조정 퍼지룰을 이용한 슬레이브 암의 시각서보)

  • Kim, Ju-Gon;Cha, Dong-Hyeok;Kim, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3038-3047
    • /
    • 1996
  • In telerobot systems, visual servoing of a task object for a slave arm with an eye-in-hand has drawn an interesting attention. As such a task ingenerally conducted in an unstructured environment, it is very difficult to define the inverse feature Jacobian matrix. To overcome this difficulty, this paper proposes an auto-tuning fuzzy rule-based visual servo algorithm. In this algorithm, a visual servo controller composed of fuzzy rules, receives feature errors as inputs and generates the change of have position as outputs. The fuzzy rules are tuned by using steepest gradient method of the cost function, which is defined as a quadratic function of feature errors. Since the fuzzy rules are tuned automatically, this method can be applied to the visual servoing of a slave arm in real time. The effctiveness of the proposed algorithm is verified through a series of simulations and experiments. The results show that through the learning procedure, the slave arm and track object in real time with reasonable accuracy.

A Study on the Rule-Based Auto-tuning PI Controller for Speed Control of D.C Servo Mortor (직류 서보 전동기의 속도제어를 위한 규칙기반 자동동조 PI 제어기에 관한 연구)

  • Park, Wal-Seo;Oh, Hun
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.89-93
    • /
    • 1997
  • As industry gets rapidly automatic, D.C servo motor which is controlled by a PI controller needs accurate control. However, when a system has various characters, it is very difficult to guarantee its accuracy. In this paper, rule-based auto-tuning PI controller for motor speed control system is presented as a way of solving this problem. Some rules are based on Ziegler-Nichols step response and expert knowledge. Control parameters are determined by error, slope, steepest slope point, and permiSSIon overshoot. The accuracy of control is demonstrated by a computer s mulation .

  • PDF

Fuzzy Identification by Means of an Auto-Tuning Algorithm and a Weighted Performance Index

  • Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.106-118
    • /
    • 1998
  • The study concerns a design procedure of rule-based systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient from of "IF..., THEN..." statements, and exploits the theory of system optimization and fuzzy implication rules. The method for rule-based fuzzy modeling concerns the from of the conclusion part of the the rules that can be constant. Both triangular and Gaussian-like membership function are studied. The optimization hinges on an autotuning algorithm that covers as a modified constrained optimization method known as a complex method. The study introduces a weighted performance index (objective function) that helps achieve a sound balance between the quality of results produced for the training and testing set. This methodology sheds light on the role and impact of different parameters of the model on its performance. The study is illustrated with the aid of two representative numerical examples.

  • PDF

Design of a Sliding Mode controller with Self-tuning Boundary Layer (경계층이 자동으로 조정되는 슬라이딩 모우드 제어기의 설계)

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.3-12
    • /
    • 1996
  • Sliding mode controller(SMC) is a simple but powerful nonlinear controller, because it guarantees the stability and the robustness. However, it leads to the high frequency chattering of the control input. Although the phenomenon can be avoided by introducing a thin boundary layer to the sliding surface, the method results in a steady state: error proportional to the boundary layer thickness. In this paper, we proposed a new sliding mode controller with self-tuning the thickness of a boundary layer. It uses a fuzzy rule base for tuning the thickness of a boundary layer. That is, the thickness is increased to some degree to reject a discontinuous control input at the initial state and then it is decreased as the states approaches to the steady states for improving the tracking performance. In order to assure the control performance, we perf'ormed the computer simulation using an inverted pendulum system as a controlled plant.

  • PDF

Sliding Mode Control of SPMSM Drivers: An Online Gain Tuning Approach with Unknown System Parameters

  • Jung, Jin-Woo;Leu, Viet Quoc;Dang, Dong Quang;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.980-988
    • /
    • 2014
  • This paper proposes an online gain tuning algorithm for a robust sliding mode speed controller of surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed controller is constructed by a fuzzy neural network control (FNNC) term and a sliding mode control (SMC) term. Based on a fuzzy neural network, the first term is designed to approximate the nonlinear factors while the second term is used to stabilize the system dynamics by employing an online tuning rule. Therefore, unlike conventional speed controllers, the proposed control scheme does not require any knowledge of the system parameters. As a result, it is very robust to system parameter variations. The stability evaluation of the proposed control system is fully described based on the Lyapunov theory and related lemmas. For comparison purposes, a conventional sliding mode control (SMC) scheme is also tested under the same conditions as the proposed control method. It can be seen from the experimental results that the proposed SMC scheme exhibits better control performance (i.e., faster and more robust dynamic behavior, and a smaller steady-state error) than the conventional SMC method.

Multi-loop PID Control Method of Brushless DC Motors via Convex Combination Method

  • Kim, Chang-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.72-77
    • /
    • 2017
  • This paper proposes the explicit tuning rule of multi-loop PID controller for brushless direct current motors to predict the system behaviors in time and frequency domains, using properties of the convex combination method. The convex set of the proposed controllers formulates the envelope to satisfy the performances in time and frequency domains. The final control parameters are determined by solving the convex optimization problem subject to the constraints which are represented as convex set of time domain performances. The effectiveness of the proposed control method is shown in the numerical simulation, in which controller tuning algorithm and dynamics of brushless DC motor are well taken into account.

The Control of a Bipedal Robot using ANFIS (ANFIS를 이용한 이족보행로봇 제어)

  • Hwang, Jae-Pil;Kim, Eun-Tai;Park, Mignon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.523-525
    • /
    • 2004
  • Over the last few years, the control of bipedal robot has been considered a promising research field in the community of robotics. But the problems we encounter make the control of a bipedal robot a hard task. The complicated link connection of the bipedal robot makes it impossible to achieve its exact model. In addition, the joint velocity is needed to accomplish good control performance. In this paper a control method using ANFIS as an system approximator is purposed. First a model biped robot of a biped robot with switching leg influence is presented. Unlike classical method, ANFIS approximation error estimator is inserted in the system for tuning the ANFIS. In the entire system, only ANFIS is used to approximate the uncertain system. ANFIS tuning rule is given combining the observation error, control error and ANFIS approximation error. But this needs velocity information which is not available. So a practical method is newly presented. Finally, computer simulation results is presented to show this control method has good position tracking performance and robustness without need for leg switching acknowledgement.

  • PDF