
J Electr Eng Technol.2017; 12(1): 72-77 
http://dx.doi.org/10.5370/JEET.2017.12.1.072 

 72 
Copyright ⓒ The Korean Institute of Electrical Engineers 

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ 
licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Multi-loop PID Control Method of Brushless DC Motors via Convex 
Combination Method 
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Abstract – This paper proposes the explicit tuning rule of multi-loop PID controller for brushless 
direct current motors to predict the system behaviors in time and frequency domains, using properties 
of the convex combination method. The convex set of the proposed controllers formulates the envelope 
to satisfy the performances in time and frequency domains. The final control parameters are 
determined by solving the convex optimization problem subject to the constraints which are 
represented as convex set of time domain performances. The effectiveness of the proposed control 
method is shown in the numerical simulation, in which controller tuning algorithm and dynamics of 
brushless DC motor are well taken into account. 
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1. Introduction 
 
Brushless Direct Current (BLDC) motors have been 

widely applied in various industries due to their advantages 
such as higher efficiency, reliability, starting torque, 
reduced electrical noises, and so on. [1]. While series-
wound brushed DC motors are applied for traction motors 
and starters of trains and railway vehicles, typical 
applications of BLDC motors are urban rail facilities such 
as railway carriage fans, screen doors, and so on [2]. 
Recently, various BLDC motors are studied for urban rail 
traction and drive train system of electric vehicle with in 
wheel motors [3, 4]. 

Although various modern control theories have been 
developed for the speed tracking control of BLDC motors, 
conventional proportional integrate differential (PID) 
controller is most commonly used in industry owing to 
their merits of simple structure, high efficiency and easy 
implementation [5]. However, the optimal tuning of PID 
controllers is still difficult to obtain proper step responses 
[6]. After initial tuning such as Ziegler-Nichols, Cohen-
Coon methods, genetic algorithm, Linear Quadratic (LQ)-
PID, and particle swam optimization (PSO), the trial and 
error way is generally applied in practice [7]. 

In this paper, an enhanced tuning method of multi-loop 
PID controller with an internal feedback controller is 
proposed for speed control of BLDC motor, called as two-
degree of freedom controller [8]. The proposed PID 
controller has an additional inner-loop controller to 
conventional PID controller in order to formulate the 
convex combination set between transfer functions of the 
initial controllers.  

The time- and frequency-responses in the convex set 

are explicitly followed on the convex properties such that 
the engineer can have the intuition to predict the controlled 
results [9]. After making the initial boundary of the set, the 
controller is designed in order to satisfy the specifications 
in time and frequency domains. The boundary is taken 
into account as an envelope curve to limit the response of 
the controlled system in order to meet the specifications in 
time- and frequency domains. Differently from the structure 
of a conventional PID controller, the proposed advanced 
controller can be modified as the various formulations 
according to inner-loop compensator [10]. 

The structure of the proposed controller is organized as 
the convex combination of the conventional PID controllers 
satisfying the time- and frequency-domain performances. 
The combination parameters are obtained by solving the 
linear matrix inequality (LMI) optimization problem subject 
to the convex constraints. In this paper, the conventional 
PID controller with an internal feedback compensator is 
chosen in order to develop the convex combination. The 
effectiveness of the proposed control method is shown in 
the simulation to realize the BLDC motor and actuator. 

The main contributions of the proposed method are 
summarized as follows:  

(i) The proposed method provides the intuition to control 
engineers to expect the controlled motor speed by time and 
frequency domain properties of convex combination method. 

(ii) The control parameters are explicitly determined by 
the proposed LMI optimization problem.  

(iii) The proposed multi-loop PID controller has degree-
of-freedom to consider various design performances in 
time-and frequency-domains. 

 
 

2. BLDC Motor Model 
 
In this chapter, the general dynamics of BLDC motors is 
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briefly introduced, which is not totally different from the 
conventional DC motors. The mathematical model of 
BLDC motor drive is simplified by a few assumptions that 
(1) symmetrical three-phase winding, (2) no magnetic 
saturation, (3) no hysteresis and eddy current losses, (4) 
uniform air-gap, (5) mutual inductance is ignored, and (6) 
armature reaction is ignored [10]. Mathematical voltage 
equation of armature winding is described as  

 

 
( )( ) ( ) ( )app emf

di tu t Ri t L u t
dt

= + +   (1) 

 
where ( )appu t (terminal voltage [V]), ( )i t (stator current 
[A]), ( )emfu t (counter electromotive force), L (armature 
self-inductance), R (armature resistance), The mechanical 
equation is represented by the sum of all torques as 
follows: 
 

 
( )

i
d tJ

dt
ω τ=∑   (2) 

 
All torques iτ  are  
 

 
( ) ( ) ( )m L f

d tJ K i t T K t
dt
ω ω= ⋅ − −   (3) 

 
where J (rotor inertia [kg·m2]), ( )tω (rotor speed [rad/sec]), 

mK (torque constant [kg·m/A]), LT (load torque [Nm]), 
fK (friction constant [kg·m·s]), ( )emfu t is proportional to 

the angular velocity with the back EMF constant 
bK [kg·m·s/rad] as the follows: 

 
 ( ) ( )emf bu t K tω= ⋅   (4) 

 
The state-space equation of BLDC motor can be 

rewritten as a second order ordinary differential equation 
with respect to the state and input variables such that 
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( )
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where the states are the current ( )i t  and the angular 
velocity ( )tω , input variable is the applied voltage ( )appu t , 
and the measured output ( )y t is the angular velocity. 

The transfer function from the input to the output is 
derived as follows: 

 

2

( )( )
( ) ( )

m

f f b m

W s KG s
U s JLs RJ K L s RK K K

= =
+ + + +

 (6) 

 
Fig. 1. Structure of 2 DOF Control System 

 
 

3. Multi-loop PID Control Scheme 
 
In this chapter, the structure of multi-loop feedback 

control systems with an inner feedback loop is introduced, 
called as two degree of freedom (DOF) controller, shown 
in Fig. 1. 

Fig. 1 illustrates the general input output signals and 
block diagram, where ( )G s , 1( )C s , 2 ( )C s , r , u , y , d, 
and e indicate the nominal plant model, the controllers, the 
reference input, the control command, the plant output, the 
disturbance signal applied to the system, and the error 
defined as e r y= − , respectively [11].  

The complementary sensitivity function of the input-
output relation is expressed as Eq. (7) 

 

 ( )
1

1 2

( ) ( )( ) .
1 ( ) ( ) ( )

ry
C s G sH s

C s C s G s
=

+ +   (7) 

 
If C2(s) is removed as zero and C1(s) is PID controller, 

the closed loop system is exactly same to the conventional 
PID control system. According to the considered controller 
for C2(s), various controlled systems can be formulated  

In this paper, PID and PI-PD controllers are dealt with to 
formulate the upper and lower bounds of the convex set. 
The traditional PID controller is denoted as  

 

 1
1( ) p i dC s K K K s
s

= + + ,  (8) 

 2 ( ) 0.C s =   (9) 
 
The transfer functions of C1(s) and C2(s) indicate PI 

controller with PD inner controller as follows : 
 

 1 1 1
1( ) p iC s K K
s

= + ,  (10) 

 2 2 2( ) .p dC s K K s= +   (11) 
 
 

4. CS-based PID-PD Controller 
 
For reading comprehension, several mathematical 

definitions should be introduced in this chapter. H, D, and 
H denote the set of all closed-loop transfer matrices, 
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design specifications, and one element of transfer matrices 
set H , respectively. [9, 10] 

H indicates the set of all conceivable candidate transfer 
matrices for the given plant to satisfy each design 
specification Di associated to the set Hi  of all transfer 
matrices [9, 10]: 

 
 H { H | H  satisfies D }.i iH= ∈   

 
The definition 1 and 2 are reintroduced to present that 

a set of transfer matrices satisfies the specifications if 
two distinct transfer matrices formulate the convex set 
according to convex combination method. 

Definition 1: 1H H⊆ is affine if for any 1, HH H ∈� , 
and any 1, (1 ) HR H Hλ λ λ∈ + − ∈� , where if λ  is restricted 
within [0,1], the affine combination (1 )H Hλ λ+ − �  is in 
the convex set [9, 10]. 

Definition 2: A functional ϕ  on H  is convex if for 
any , HH H ∈� and any [0,1]λ ∈ , ( (1 ) )H Hϕ λ λ+ − ≤�  

( ) (1 ) ( )H Hλϕ λ ϕ+ − �  [9, 10]. 
 
The convex set properties can be applied in order to 

design the general feedback controller. If the general unit 
feedback controller, proH  is designed to formulate the 
convex set between ryH  and ryH� , Hpro is controlled by 
the controller proC  in Eq. (15)  
where 
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pro
ry
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+
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The controller proC  is obtained as Eq. (16) from 

component to form the convex set. 
 

 
( )( )

( )( )
( ) 1 ( )

( ) .
( ) 1 ( ) 1 ( )

ry ry
pro

ry ry

H s H s
C s

H s H s G s

λ λ

λ λ

− + −
=

+ − −

�

�  (16) 

Thus, the designed controller is represented as Eq. (17) 
 

 1 1 1 1 1

1 1 1
( )

1
pro

C C C C C GC s
C G C G C G

λ λ
λ λ

− + +
=

+ − +
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�   (17) 

 
such that the order of the desired controller should be 
dependent on the plant. This dependency problem is very 
complicated to design the controller in practice.  

In this paper, the proposed controller is independent on 
the order of the plant because the controlled system, 
represented as Eq. (18) has the common denominator with 
respect to the convex set.  

 

1 2

( ) ( )
1 ( ( ) ( )) ( )

( ) ( ) ( ) ( )
1 ( ( ) ( )) ( ) 1 ( ) ( )

PID
PID PD

PID PD

pi pid

pi pd pid

C s G sT
C s C s G s

C s G s C s G s
C s C s G s C s G s

λ λ

− =
+ +

= +
+ + +

 (18) 

 
In the design scheme, the proposed PID-PD controller is 

determined to form convex combination from PI-PD, 
represented as Eq. (19) and PID-PD, represented as Eqs. 
(20) and (21), respectively  

 

 
*

* * *1( ) ,   ( )
1 1

i
pi p pd p d

TC s K C s K T s
s

β
β β

= + = +
+ +

  (19) 

 
*

1 2 * *
1 2( )

1
i

PID p d
TC s K T s
s

λ β λ λ λ
β
+

= + +
+

,  (20) 

 
*

2 1 *
1

β λ( )
1 β

p
PD d

KC s T sλ λ+
= +

+
.  (21) 

 
At 1 2,  1λ λ λ λ= = − , the step responses of the 

proposed control system show the convex properties in 
Fig. 2, such that the boundary of convex set formulates 
the envelop curve of the desired response [11]. The PI-
PD controller is determined by control factor β  to set the 
lower boundary of the desired controlled response.  

To determine the control parameters, 1λ  and 2λ , of the 
proposed controller, three functionals of H  are dealt with 
in the time-domain specifications such as the overshoot, 
rise-time, and settling time in this paper. 

These functionals on H  are convex, so the functional 
inequality specifications, 

 
 1(a )

osD  :  ( )OS Hϕ α≤ ,  (22) 

 2(a )
maxriseD  :  ( )rise H Tϕ ≤   (23) 

 3(a )
max_settleD  :  ( )settle setH Tϕ ≤   (24) 

 
are convex [9, 10]. 

The convex functional inequalities of the given design 
specifications can be represented as linear matrix 
inequalities. The control gains are obtained by solving the 
convex optimization problem, in which the objective 

Table 1. Mathematical definition for convex set 

Design specifications Sets of transfer matrices 
H satisfies D 

D1 is stronger than D2 
D1 is weaker than D2 

1 2D D∧  
D1 is infeasible 
D1 is feasible 

HH ∈  
1 2H H⊆  
1 2H H⊇  
1 2H H∩  

1H 0=  
1H 0≠  
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functional can be formed as a weighted-sum objective  
 

 1 1( ) ( ) ( )obj L LH b H b Hϕ ϕ ϕ= + +"   (25) 
 

where ib  are weighting factors, which the designer selects 
according to the importance of the performances. 

Thus, the general convex optimization problem to design 
the proposed controller is represented as  

 

 
1 1

1 1

 minimize   ( ) ( ) ( )
 subject to   ( )  ,  , ( )  
 bounded to   1( 1,2, )  ,  1

obj L L

L L

i i

b b
H a H a

o λ i λ

ϕ λ ϕ λ ϕ λ
ϕ ϕ

= + +
≤ ≤

≤ ≤ = =∑

"
…

…
 (26) 

 
where the constraints are determined in order to formulate 
the envelop curve of the design performances. 

In this paper, the convex optimization is derived as Eq. 
(27) subject to the constraints which describe the design 
specifications as LMI with respect to overshoot, rise-time, 
and settling time. 

 

 

1 2 3

OS1 OS2
1

rt1 rt2
2

1 2

 minimize   ( )

 subject to    

 bounded to   1( 1,2),  1   

obj OS rt st

desire

desire

st st desire

i i

b b b

o λ i λ

ϕ λ α β γ
αα α λβ β β

λγ γ γ

= + +

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ≤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
≤ ≤ = =∑

 (27) 

 
In order to design the controller, first the region of the 

feasible controllers as the envelop curve is bounded to 
satisfy the constraints of the system specifications. 
Secondly, the optimization problem is applied to find the 
optimum value of the weighted-sum objective functional as 
Eq. (27), subject to the convex set to satisfy the functional 
inequality specifications. Finally, the parameters of PID-
PD controller are obtained by solving the optimization 
problem. Fig. 3 summarizes the design procedure of the 
proposed controller. 

The design procedure of the proposed method is 
summarized as 

 
Fig. 3. Control design flow-chart 

 
Summary of Design Procedure 

 
Step 1:  Set model parameters of a given plant  
Step 2:  Specify the boundary satisfying the required 

design specifications such as overshoot, rise-time, settling 
time, and so on. 

Step 3:  Choose the objective functional to weight the 
considered performances according to the system require-
ment. 

Step 4: Solve the convex optimization problem subject 
to constraints and calculate the control gains. 

Step 5: Finish the process to determine the adequate 
controller if all of required design specifications are 
satisfied, if not reset the constraints, beginning with Step 2. 

 
 

5. Simulation 
 
In controller tuning algorithm, mechanical and electrical 

dynamics of BLDC motor are taken into account by 
simulation test.  

The specifications of the BLCD motor are shown in 
Table 2. The transfer function of the BLDC motor is 
obtained as Eq. (22). [10] 

 

 
Fig. 2. Aspect of step responses obtained from convex set 

of the controlled systems 

Table 2. System parameters of the BLDC motor 

Parameters Values and units 
R  21.2 Ω  

bK  0.1433 V s/rad  

fK  -41 10  kg-m s/rad×  
L  0.052 H  

mK  0.1433 kg-m/A  

J  -5 21 10  kg-m s /rad×  



Multi-loop PID Control Method of Brushless DC Motors via Convex Combination Method 

 76 │ J Electr Eng Technol.2017; 12(1): 72-77 

 
2

275577.36( )
417.7 43567.5

G s
s s

=
+ +

.  (22) 

 
The optimization problem for this example is determined 

as  
 

 
OS1 OS2

1
rt1 rt2

2
1 2

 minimize   ( ) 0.2 3.3 1.4
5%

 subject to   0.3  
0.7

 bounded to   1( 1,2)  ,  1   

obj OS rt st

st st

i i

ms
ms

o λ i λ

ϕ λ α β γ

α α
λ

β β
λ

γ γ

= + +

⎡ ⎤⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥ ≤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

≤ ≤ = =∑

 

 
where the weighting factors of the cost function are 
selected in order to regulate each performances without 
weights such that the specifications with respect to ,OSα  

,rt stβ γ are considered with the exactly same importance.  
The various tuning methods of PID such as LQ-PID, 

POS, and genetic algorithms are chosen to compare the 
time-domain response of the proposed control system 
with the conventional PID methods [12, 13]. As shown 
Fig. 4 and Table 3, the proposed method only satisfies 
the requirement of the time-domain specification. 

The proposed method results that the design 
specifications such as the overshoot, rise-time, and settling 
time not only maintain into the boundary, but it achieves 
the better speed performances comparing with the other 
methods in this case. 

 

 
Fig. 4. Comparison of step responses  

 
Table 3. Comparison of system performances  

Methods Rise time  
(msec) 

Settling time  
(msec) 

Overshoot
(%) 

Proposed 0.223 0.639 2.16 
GA 0.185 0.982 15.6 

LQ-PID 0.177 1.14 10.8 
PSO 0.128 0.69 16.8 

 
 

5. Conclusion 
 
In this paper, a novel tuning formula for the BLDC 

motors was proposed in order to obtain a good command 

following properties via convex combination method 
formulating the convex set between PID and PI-PD 
controllers. By solving the derived convex optimization 
problem subject to LMI constraints, the PID-PD control 
gains are determined, minimizing the time-domain 
performances which have convex set properties. The 
advantages of the proposed method are that all tuning 
parameters are analytically obtained according to the 
optimization solution, the stability of the controlled system 
is guaranteed inherently from the convex set properties, 
and various time-domain performances can be dealt with 
by adding the controllers to provide the convex set. 

For future works, it needs to research for the generality 
of the proposed method in the areas such as the multi-
variable system, nonlinear applications, and so on. 
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