• 제목/요약/키워드: tumor necrosis factor α

검색결과 497건 처리시간 0.044초

Inhibition of TNF-α-mediated NF-κB Transcriptional Activity in HepG2 Cells by Dammarane-type Saponins from Panax ginseng Leaves

  • Song, Seok-Bean;Tung, Nguyen Huu;Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Kim, Kyoon-Eon;Kim, Young-Ho
    • Journal of Ginseng Research
    • /
    • 제36권2호
    • /
    • pp.146-152
    • /
    • 2012
  • Panax ginseng (PG) is a globally utilized medicinal herb. The medicinal effects of PG are primarily attributable to ginsenosides located in the root and leaf. The leaves of PG are known to be rich in various bioactive ginsenosides, and the therapeutic effects of ginseng extract and ginsenosides have been associated with immunomodulatory and anti-inflammatory activities. We examined the effect of PG leaf extract and the isolated ginsenosides, on nuclear factor (NF)-${\kappa}B$transcriptional activity and target gene expression by applying a luciferase assay and reverse transcription polymerase chain reaction in tumor necrosis factor (TNF)-${\alpha}$-treated hepatocarcinoma HepG2 cells. Air-dried PG leaf extract inhibited TNF-${\alpha}$-induced NF-${\kappa}B$transcription activity and NF-${\kappa}B$-dependent cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) gene expression more efficiently than the steamed extract. Of the 10 ginsenosides isolated from PG leaves, Rd and Km most significantly inhibited activity in a dose-dependent manner, with $IC_{50}$ values of $12.05{\pm}0.82$ and $8.84{\pm}0.99\;{\mu}M$, respectively. Furthermore, the ginsenosides Rd and Km inhibited the TNF-${\alpha}$-induced expression levels of the COX-2 and iNOS gene in HepG2 cells. Air-dried leaf extracts and their chemical components, ginsenoside Rd and Km, are involved in the suppression of TNF-${\alpha}$-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-dependent iNOS and COX-2 gene expression. Consequently, air-dried leaf extract from PG, and the purified ginsenosides, have therapeutic potential as anti-inflammatory.

Gabexate mesilate ameliorates the neuropathic pain in a rat model by inhibition of proinflammatory cytokines and nitric oxide pathway via suppression of nuclear factor-κB

  • Oh, Seon Hee;Lee, Hyun Young;Ki, Young Joon;Kim, Sang Hun;Lim, Kyung Joon;Jung, Ki Tae
    • The Korean Journal of Pain
    • /
    • 제33권1호
    • /
    • pp.30-39
    • /
    • 2020
  • Background: This study examined the effects of gabexate mesilate on spinal nerve ligation (SNL)-induced neuropathic pain. To confirm the involvement of gabexate mesilate on neuroinflammation, we focused on the activation of nuclear factor-κB (NF-κB) and consequent the expression of proinflammatory cytokines and inducible nitric oxide synthase (iNOS). Methods: Male Sprague-Dawley rats were used for the study. After randomization into three groups: the sham-operation group, vehicle-treated group (administered normal saline as a control), and the gabexate group (administered gabexate mesilate 20 mg/kg), SNL was performed. At the 3rd day, mechanical allodynia was confirmed using von Frey filaments, and drugs were administered intraperitoneally daily according to the group. The paw withdrawal threshold (PWT) was examined on the 3rd, 7th, and 14th day. The expressions of p65 subunit of NF-κB, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and iNOS were evaluated on the 7th and 14th day following SNL. Results: The PWT was significantly higher in the gabexate group compared with the vehicle-treated group (P < 0.05). The expressions of p65, proinflammatory cytokines, and iNOS significantly decreased in the gabexate group compared with the vehicle-treated group (P < 0.05) on the 7th day. On the 14th day, the expressions of p65 and iNOS showed lower levels, but those of the proinflammatory cytokines showed no significant differences. Conclusions: Gabexate mesilate increased PWT after SNL and attenuate the progress of mechanical allodynia. These results seem to be involved with the antiinflammatory effect of gabexate mesilate via inhibition of NF-κB, proinflammatory cytokines, and nitric oxide.

Korean Red Ginseng and Portulaca oleracea Extracts Attenuate Lipopolysaccharide-induced Inflammation via Downregulation of Nuclear Factor Kappa-B and the Mitogen-activated Protein Kinase Signaling Pathway in Macrophage Cell Line RAW 264.7

  • Ullah, HM Arif;Kim, Tae-Hwan;Saba, Evelyn;Kim, Sung Dae;Rhee, Man Hee
    • 대한의생명과학회지
    • /
    • 제27권2호
    • /
    • pp.51-58
    • /
    • 2021
  • Korean red ginseng (Panax ginseng Meyer) is a well-known traditional medicine, with numerous biological functions in the body. Portulaca oleracea (P. ole) belongs to the Portulacaceae family and has bioactive potential as a traditional medicine. This study aimed to determine the anti-inflammatory effects of Korean red ginseng extract (RGE) and P. ole extract on lipopolysaccharide (LPS)-treated RAW 264.7 cells. The combination of RGE (50 ㎍/mL) and P. ole (6.25 ㎍/mL) extracts significantly suppressed LPS-induced nitric oxide synthesis. The expression of proinflammatory mediators, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and proinflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α, were markedly decreased by the combined treatment with RGE (50 ㎍/mL) and P. ole (6.25 ㎍/mL). Moreover, iNOS and COX-2 protein expression levels were also significantly reduced in the combined treatment compared to the LPS-stimulated group. In addition, the nuclear translocation of phosphorylated nuclear factor kappa-B was suppressed by the treatment with RGE and P. ole. Moreover, the mitogen-activated protein kinase pathway was also partially inhibited by the combination treatment with RGE and P. ole. Our results demonstrate that the treatment mixture with RGE and P. ole could be used as functional food and therapeutic herbal medicine in various inflammatory diseases.

Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation

  • Zhu, Lirong;Huang, Yangliang;Hu, Yuming;Tang, Qian;Zhong, Yi
    • The Korean Journal of Pain
    • /
    • 제34권1호
    • /
    • pp.47-57
    • /
    • 2021
  • Background: Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms. Methods: An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of proand anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay. Results: Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn. Conclusions: The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.

LPS에 의해 유도된 인지기능 손상모델에 대한 천마 추출물의 방어효과 (Protective Effect of Gatrodiae Rhizoma Extracts on the LPS-Induced Cognitive Impairment Model)

  • 권강범;김하림;김예슬;박은희;강형원;류도곤
    • 동의신경정신과학회지
    • /
    • 제33권3호
    • /
    • pp.277-285
    • /
    • 2022
  • Objectives: Gastrodia elata (GE) has been used to treat cognition impairment, including Alzheimer's disease (AD) in Korea. The purpose of this study was to investigate the effects of GE water extracts (GEE) on the lipopolysaccharide (LPS)-induced AD model in mice. (Aβ). Methods: We classified six groups as follow; group 1: control (CON), group 2: LPS (0.5 mg/kg/day, four times), group 3: 4 mg/kg donepezil (DP), group 4: 100 mg/kg GEE+LPS, group 5: 200 mg/kg GEE+LPS, group 6: 500 mg/kg GEE+LPS. Results: We found that GEE has an effect that inhibits decrease of discrimination index in object recognition test, as well as spontaneous alteration in the Y-maze test by LPS. Treatment with LPS increased amlyloid-β (Aβ) concentration, and decreased brain-derived neurotrophic factor (BDNF) in cerebral cortex of mice. However, GEE significantly protected against LPS-induced Aβ and BDNF changes. Our findings also showed that the inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β)] mRNA and protein were up-regulated by the LPS injection. But GEE significantly suppressed LPS-induced inflammatory cytokines increase in a dose-dependent manner. Conclusions: This study suggests that the GEE may be an effective AD therapeutic agent, in treating neurodegenerative diseases including AD.

Investigation of Immunostimulatory Effects of Heat-Treated Lactiplantibacillus plantarum LM1004 and Its Underlying Molecular Mechanism

  • Bae, Won-Young;Jung, Woo-Hyun;Shin, So Lim;Kwon, Seulgi;Sohn, Minn;Kim, Tae-Rahk
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1031-1045
    • /
    • 2022
  • Postbiotics are defined as probiotics inactivated by heat, ultraviolet radiation, sonication, and other physical or chemical stresses. Postbiotics are more stable than probiotics, and these properties are advantageous for food additives and pharmacological agents. This study investigated the immunostimulatory effects of heat-treated Lactiplantibacillus plantarum LM1004 (HT-LM1004). Cellular fatty acid composition of L. plantarum LM1004 isolated form kimchi was analyzed by gas chromatography-mass spectrometry detection system. The nitric oxide (NO) content was estimated using Griess reagent. Immunostimulatory cytokines were evaluated using enzyme-linked immunosorbent assay. Relative protein expressions were evaluated by western blotting. Phagocytosis was measured using enzyme-labelled Escherichia coli particles. L. plantarum LM1004 showed 7 kinds of cellular fatty acids including palmitic acid (C16:0). The HT-LM1004 induced release of NO and upregulated the inducible NO synthase in RAW 264.7 macrophage cells. Tumor necrosis factor-α and interleukin-6 levels were also increased compared to control (non-treated macrophages). Furthermore, HT-LM1004 modulated mitogen-activated protein kinase (MAPK) subfamilies including p38 MAPK, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase. Therefore, these immunostimulatory effects were attributed to the production of transcriptional factors, such as nuclear factor kappa B (NF-κB) and the activator protein 1 family (AP-1). However, HT-LM1004 did not showed significant phagocytosis of RAW 264.7 macrophage cells. Overall, HT-LM1004 stimulated MAPK/AP-1 and NF-κB expression, resulting in the release of NO and cytokines. These results will contribute to the development of diverse types of food and pharmacological products for immunostimulatory agents with postbiotics.

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Effects of dietary inactivated probiotics on growth performance and immune responses of weaned pigs

  • Kang, Joowon;Lee, Jeong Jae;Cho, Jin Ho;Choe, Jeehwan;Kyoung, Hyunjin;Kim, Sung Hun;Kim, Hyeun Bum;Song, Minho
    • Journal of Animal Science and Technology
    • /
    • 제63권3호
    • /
    • pp.520-530
    • /
    • 2021
  • This experiment was performed to verify whether dietary heat-killed Lactobacillus rhamnosus (LR) improves growth performance and modulates immune responses of weaned pigs. Ninety-six weaned pigs ([Landrace × Yorkshire] × Duroc; 6.95 ± 0.25 kg body weight [BW]; 28 d old) were randomly allocated to four treatments: 1) a basal diet without heat-killed LR (CON), 2) T1 (CON with 0.1% heat-killed LR), 3) T2 (CON with 0.2% heat-killed LR), and 4) T3 (CON with 0.4% heat-killed LR). Each treatment had six pens with four pigs (6 replicates per treatment) in a randomized completely block design. The heat-killed LR used in this study contained 1 × 109 FU/g of LR in a commercial product. Pigs were fed each treatment for four weeks using a two-phase feeding program to measure growth performance and frequency of diarrhea. During the last week of this study, all diets contained 0.2% chromic oxide as an indigestible marker. Fecal sampling was performed through rectal palpation for the consecutive three days after the four adaptation days to measure apparent total tract digestibility (ATTD) of dry matter, crude protein, and gross energy (GE). Blood sampling was also performed on day 1, 3, 7, and 14 after weaning to measure immune responses such as serum tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), C-reactive protein (CRP), and cortisol. The heat-killed LR increased (p < 0.05) growth rate, feed efficiency, and ATTD of GE for overall experimental period compared with CON, but reduced (p < 0.05) post-weaning diarrhea. In addition, pigs fed diets contained heat-killed had lower concentrations of serum TNF-α (d 7; p < 0.05), TGF-β1 (d 7; p < 0.10), and cortisol (d 3 and 7; p < 0.05) than pigs fed CON. In conclusion, dietary heat-killed LR improved growth rate, modified immune responses of weaned pigs, and alleviated post-weaning diarrhea.

LPS로 활성화한 RAW 264.7 세포에서 HK표고버섯균사체의 NF-κB 활성 억제를 통한 항염증 효과 (Anti-inflammatory Efficacy of HK Shiitake Mushroom Mycelium in LPS-treated RAW 264.7 Cells Through Down-regulation of NF-κB Activation)

  • 송채영;오태우;김훈환;이유빈;김정옥;김곤섭;하영래
    • 생명과학회지
    • /
    • 제32권7호
    • /
    • pp.491-500
    • /
    • 2022
  • HK표고버섯균사체(HK shiitake mushroom mycelium, HKSMM)는 간 건강 개별 인정 건강기능식품이다. LPS로 활성화된 RAW 264.7 세포에서 HKSMM50 (HKSMM의 50% ethanol 수용액 추출물)의 항염증효과를 연구하였다. AHCC는 positive control로 사용하였다. LPS로 활성화된 RAW 264.7 세포에 HKSMM50 및 AHCC를 처리(0, 20, 100, 500 ㎍/ml)하고 24시간 배양하여 배양물의 염증 관련 인자는 ELISA kits로, 세포에 함유된 iNOS와 COX-2 protein 발현은 Western blotting으로 측정하였다. HKSMM50는 LPS 처리에 비해 농도 의존적으로 NF-κB 함량을 낮추었고, iNOS와 COX-2 protein 발현을 억제하여 NO와 PGE2 함량을 낮추었다. 더불어 HKSMM50는 LPS 처리에 비해 IL-1β, TNF-α, IL-4 및 IL-6의 함량을 낮추었으나 SOD와 CAT의 활성은 증가시켰다. AHCC도 HKSSM50 처리와 비슷한 효과를 나타내었다. 이 결과는 HKSMM50이 LPS로 활성화된 RAW 264.7 세포에서 NF-κB 신호전달을 억제하여 항염증효과를 나타내었으며, HKSMM은 면역기능증진에 도움을 줄 수 있는 건강기능식품원료로 사용할 수 있을 것이다.

High-plasticity mineral trioxide aggregate and its effects on M1 and M2 macrophage viability and adherence, phagocyte activity, production of reactive oxygen species, and cytokines

  • Betania Canal Vasconcellos;Layara Cristine Tomaz Tavares;Danilo Couto da Silva;Francielen Oliveira Fonseca ;Francine Benetti ;Antonio Paulino Ribeiro Sobrinho ;Warley Luciano Fonseca Tavares
    • Restorative Dentistry and Endodontics
    • /
    • 제48권1호
    • /
    • pp.6.1-6.14
    • /
    • 2023
  • Objectives: This study evaluated the effects of high-plasticity mineral trioxide aggregate (MTA-HP) on the activity of M1 and M2 macrophages, compared to white MTA (Angelus). Materials and Methods: Peritoneal inflammatory M1 (from C57BL/6 mice) and M2 (from BALB/c mice) macrophages were cultured in the presence of the tested materials. Cell viability (MTT and trypan blue assays), adhesion, phagocytosis, reactive oxygen species (ROS) production, and tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β production were evaluated. Parametric analysis of variance and the non-parametric Kruskal-Wallis test were used. Results were considered significant when p < 0.05. Results: The MTT assay revealed a significant decrease in M1 metabolism with MTA-HP at 24 hours, and with MTA and MTA-HP later. The trypan blue assay showed significantly fewer live M1 at 48 hours and live M2 at 48 and 72 hours with MTA-HP, compared to MTA. M1 and M2 adherence and phagocytosis showed no significant differences compared to control for both materials. Zymosan A stimulated ROS production by macrophages. In the absence of interferon-γ, TNF-α production by M1 did not significantly differ between groups. For M2, both materials showed higher TNF-α production in the presence of the stimulus, but without significant between-group differences. Likewise, TGF-β production by M1 and M2 macrophages was not significantly different between the groups. Conclusions: M1 and M2 macrophages presented different viability in response to MTA and MTA-HP at different time points. Introducing a plasticizer into the MTA vehicle did not interfere with the activity of M1 and M2 macrophages.