DOI QR코드

DOI QR Code

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An (Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University) ;
  • Yongli Guo (Department of Immunology, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University) ;
  • Mingchun Gao (Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University) ;
  • Junwei Wang (Heilongjiang Provincial Key Laboratory of Zoonosis, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University)
  • Received : 2023.04.11
  • Accepted : 2023.07.03
  • Published : 2023.09.30

Abstract

Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Keywords

Acknowledgement

The authors would like to thank YueYang Yu for helping to isolate Streptococcus dysgalactiae.

References

  1. Zhang L, Zhang H, Fan Z, Zhou X, Yu L, Sun H, et al. Production of mouse monoclonal antibody against Streptococcus dysgalactiae GapC protein and mapping its conserved B-cell epitope. Res Vet Sci. 2015;98:39-41. https://doi.org/10.1016/j.rvsc.2014.11.005
  2. Yao D, Zhang H, Wang X, Yu S, Wei Y, Liu W, et al. Identification and characterization of CD4+ T-cell epitopes on GapC protein of Streptococcus dysgalactiae. Microb Pathog. 2016;91:46-53. https://doi.org/10.1016/j.micpath.2015.11.025
  3. Zhang L, Zhang H, Fan Z, Zhou X, Yu L, Sun H, et al. Identification of a conserved linear B-cell epitope of Streptococcus dysgalactiae GapC protein by screening phage-displayed random peptide library. PLoS One. 2015;10(6):e0131221.
  4. Kabelitz T, Aubry E, van Vorst K, Amon T, Fulde M. The role of Streptococcus spp. in bovine mastitis. Microorganisms. 2021;9(7):1497.
  5. Zhao YN, Wang H, Su LL, Wang HQ, Zhang BJ, Su Y. Optimized GAPDH-truncated immunogen of Streptococcus equi elicits an enhanced immune response and provides effective protection in a mouse model. Vet Microbiol. 2021;254:108953.
  6. Madureira P, Andrade EB, Gama B, Oliveira L, Moreira S, Ribeiro A, et al. Inhibition of IL-10 production by maternal antibodies against Group B Streptococcus GAPDH confers immunity to offspring by favoring neutrophil recruitment. PLoS Pathog. 2011;7(11):e1002363.
  7. Wang G, Xia Y, Cui J, Gu Z, Song Y, Chen YQ, et al. The roles of moonlighting proteins in bacteria. Curr Issues Mol Biol. 2014;16:15-22.
  8. Kopeckova M, Pavkova I, Stulik J. Diverse localization and protein binding abilities of glyceraldehyde-3-phosphate dehydrogenase in pathogenic bacteria: the key to its multifunctionality? Front Cell Infect Microbiol. 2020;10:89.
  9. Li L, Zhang W, Wang C, Wang H. Mechanisms of glyceraldehyde 3-phosphosphate dehydrogenaseis in bacteria adhesion - a review. Wei Sheng Wu Hsueh Pao. 2016;56(9):1398-1405.
  10. Seidler KA, Seidler NW. Role of extracellular GAPDH in Streptococcus pyogenes virulence. Mo Med. 2013;110(3):236-240.
  11. Zhang WM, Wang HF, Gao K, Wang C, Liu L, Liu JX. Lactobacillus reuteri glyceraldehyde-3-phosphate dehydrogenase functions in adhesion to intestinal epithelial cells. Can J Microbiol. 2015;61(5):373-380. https://doi.org/10.1139/cjm-2014-0734
  12. Chen PC, Hsieh MH, Kuo WS, Wu LS, Kao HF, Liu LF, et al. Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein of Lactobacillus gasseri attenuates allergic asthma via immunometabolic change in macrophages. J Biomed Sci. 2022;29(1):75.
  13. Yang YB, Wang S, Wang C, Huang QY, Bai JW, Chen JQ, et al. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794. Arch Microbiol. 2015;197(10):1173-1180. https://doi.org/10.1007/s00203-015-1158-4
  14. Wang Z, Guo M, Kong L, Gao Y, Ma J, Cheng Y, et al. TLR4 agonist combined with trivalent protein JointS of Streptococcus suis provides immunological protection in animals. Vaccines (Basel). 2021;9(2):184.
  15. Oliveira L, Madureira P, Andrade EB, Bouaboud A, Morello E, Ferreira P, et al. Group B streptococcus GAPDH is released upon cell lysis, associates with bacterial surface, and induces apoptosis in murine macrophages. PLoS One. 2012;7(1):e29963.
  16. Liang S, Figtree G, Aiqun M, Ping Z. GAPDH-knockdown reduce rotenone-induced H9C2 cells death via autophagy and anti-oxidative stress pathway. Toxicol Lett. 2015;234(3):162-171. https://doi.org/10.1016/j.toxlet.2015.02.017
  17. Sheng X, Zhang H, Liu M, Tang X, Xing J, Chi H, et al. Development and evaluation of recombinant B-cell multi-epitopes of PDHA1 and GAPDH as subunit vaccines against Streptococcus iniae infection in flounder (Paralichthys olivaceus). Vaccines (Basel). 2023;11(3):624.
  18. Ma J, Wang L, Fan Z, Liu S, Wang X, Wang R, et al. Immunogenicity of multi-epitope vaccines composed of epitopes from Streptococcus dysgalactiae GapC. Res Vet Sci. 2021;136:422-429. https://doi.org/10.1016/j.rvsc.2020.12.019
  19. Sun X, Wang J, Zhou J, Wang H, Wang X, Wu J, et al. Subcutaneous immunization with Streptococcus pneumoniae GAPDH confers effective protection in mice via TLR2 and TLR4. Mol Immunol. 2017;83:1-12. https://doi.org/10.1016/j.molimm.2017.01.002
  20. Nagai K, Domon H, Maekawa T, Oda M, Hiyoshi T, Tamura H, et al. Pneumococcal DNA-binding proteins released through autolysis induce the production of proinflammatory cytokines via toll-like receptor 4. Cell Immunol. 2018;325:14-22. https://doi.org/10.1016/j.cellimm.2018.01.006
  21. Gao X, Wang X, Pham TH, Feuerbacher LA, Lubos ML, Huang M, et al. NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-κB activation. Cell Host Microbe. 2013;13(1):87-99. https://doi.org/10.1016/j.chom.2012.11.010
  22. Rutz S, Ouyang W. Regulation of interleukin-10 expression. Adv Exp Med Biol. 2016;941:89-116. https://doi.org/10.1007/978-94-024-0921-5_5
  23. Liu G, Yin J, Han B, Barkema HW, Shahid M, De Buck J, et al. Adherent/invasive capacities of bovine-associated Aerococcus viridans contribute to pathogenesis of acute mastitis in a murine model. Vet Microbiol. 2019;230:202-211. https://doi.org/10.1016/j.vetmic.2019.02.016
  24. Thu Nguyen TT, Nguyen HT, Vu-Khac H, Wang PC, Chen SC. Identification of protective protein antigens for vaccination against Streptococcus dysgalactiae in cobia (Rachycentron canadum). Fish Shellfish Immunol. 2018;80:88-96. https://doi.org/10.1016/j.fsi.2018.05.052
  25. Kerro-Dego O, Prysliak T, Perez-Casal J, Potter AA. Role of GapC in the pathogenesis of Staphylococcus aureus. Vet Microbiol. 2012;156(3-4):443-447. https://doi.org/10.1016/j.vetmic.2011.11.018
  26. Collado R, Prenafeta A, Gonzalez-Gonzalez L, Perez-Pons JA, Sitja M. Probing vaccine antigens against bovine mastitis caused by Streptococcus uberis. Vaccine. 2016;34(33):3848-3854. https://doi.org/10.1016/j.vaccine.2016.05.044
  27. Hawksworth D. Advancing Freund's and AddaVax adjuvant regimens using CpG oligodeoxynucleotides. Monoclon Antib Immunodiagn Immunother. 2018;37(5):195-199. https://doi.org/10.1089/mab.2018.0022
  28. Trung Cao T, Tsai MA, Yang CD, Wang PC, Kuo TY, Gabriel Chen HC, et al. Vaccine efficacy of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Edwardsiella ictaluri against E. tarda in tilapia. J Gen Appl Microbiol. 2014;60(6):241-250. https://doi.org/10.2323/jgam.60.241
  29. Fu Q, Wei Z, Liu X, Xiao P, Lu Z, Chen Y. Glyceraldehyde-3-phosphate dehydrogenase, an immunogenic Streptococcus equi ssp. zooepidemicus adhesion protein and protective antigen. J Microbiol Biotechnol. 2013;23(4):579-585. https://doi.org/10.4014/jmb.1209.09037
  30. An R, Gao M, Meng Y, Tong X, Chen J, Wang J. Infective mastitis due to bovine-associated Streptococcus dysgalactiae contributes to clinical persistent presentation in a murine mastitis model. Vet Med Sci. 2021;7(5):1600-1610. https://doi.org/10.1002/vms3.509
  31. Nakano T, Goto S, Takaoka Y, Tseng HP, Fujimura T, Kawamoto S, et al. A novel moonlight function of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for immunomodulation. Biofactors. 2018;44(6):597-608. https://doi.org/10.1002/biof.1379
  32. Liu J, Zhang X, Cheng Y, Cao X. Dendritic cell migration in inflammation and immunity. Cell Mol Immunol. 2021;18(11):2461-2471. https://doi.org/10.1038/s41423-021-00726-4
  33. Sullivan MJ, Goh KG, Thapa R, Chattopadhyay D, Ipe DS, Duell BL, et al. Streptococcus agalactiae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) elicits multiple cytokines from human cells and has a minor effect on bacterial persistence in the murine female reproductive tract. Virulence. 2021;12(1):3015-3027. https://doi.org/10.1080/21505594.2021.1989252
  34. Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170-181.  https://doi.org/10.1038/nri2711
  35. Nilsen NJ, Vladimer GI, Stenvik J, Orning MP, Zeid-Kilani MV, Bugge M, et al. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling. J Biol Chem. 2015;290(6):3209-3222. https://doi.org/10.1074/jbc.M114.593426
  36. Liu Y, Yin H, Zhao M, Lu Q. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol. 2014;47(2):136-147. https://doi.org/10.1007/s12016-013-8402-y
  37. Quan H, Kim J, Na YR, Kim JH, Kim BJ, Kim BJ, et al. Human cytomegalovirus-induced interleukin-10 production promotes the proliferation of Mycobacterium massiliense in macrophages. Front Immunol. 2020;11:518605.
  38. Ricci-Azevedo R, Mendonca-Natividade FC, Santana AC, Alcoforado Diniz J, Roque-Barreira MC. Microneme proteins 1 and 4 from Toxoplasma gondii induce IL-10 production by macrophages through TLR4 endocytosis. Front Immunol. 2021;12:655371.
  39. Mishima Y, Oka A, Liu B, Herzog JW, Eun CS, Fan TJ, et al. Microbiota maintain colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10-producing regulatory B cells. J Clin Invest. 2019;129(9):3702-3716. https://doi.org/10.1172/JCI93820
  40. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12(3):231-238. https://doi.org/10.1038/ni.1990
  41. Tabares-Guevara JH, Jaramillo JC, Ospina-Quintero L, Piedrahita-Ochoa CA, Garcia-Valencia N, Bautista-Erazo DE, et al. IL-10-dependent amelioration of chronic inflammatory disease by microdose subcutaneous delivery of a prototypic immunoregulatory small molecule. Front Immunol. 2021;12:708955.
  42. Bhattarai D, Worku T, Dad R, Rehman ZU, Gong X, Zhang S. Mechanism of pattern recognition receptors (PRRs) and host pathogen interplay in bovine mastitis. Microb Pathog. 2018;120:64-70.  https://doi.org/10.1016/j.micpath.2018.04.010