• Title/Summary/Keyword: tumor development

Search Result 1,433, Processing Time 0.03 seconds

Development of Glioblastoma In Vivo Model for the Research of Brain Cancer Diagnosis and Therapy (뇌암 진단 및 치료 연구를 위한 교모세포종 동물모델 개발)

  • Kang, Seonghee;Kang, Bosun
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.389-395
    • /
    • 2014
  • The research was carried out to develop a animal model of malignant brain tumor for the researches in glioblastoma multiform (GBM) diagnosis and therapy. C6 cells were transplanted into the right striatum of SD rat using stereotactic instrument for the development. The developed animal model was verified by MRI and H&E stain assay of anatomicohistological examination. The MRI observations showed that the tumor developed at the injection site at the 7 days after glioblastoma inoculation. At 14 days post inoculation, the tumor grew to a large volume occupying almost a half of the right cerebral hemisphere. It was confirmed that the expression of excessive mitosis and pleomorphism in anatomicohistological examination. The developed animal model must be necessary and useful tool for the in vivo level research in the development of the new modality for the diagnosis and therapy of brain cancer.

Autophagy and Oral Cancer (자가포식작용과 구강암)

  • Son, Seung Hwa;Kim, Eun-Jung
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.958-964
    • /
    • 2017
  • Autophagy plays an important role in cellular homeostasis and survival for cell recycling and various stresses within the cell. Recent studies have shown that autophagy activity modulates the expression of oncogene and tumor suppressor genes, leading to the development or suppression of cancer. Induction of autophagy is involved in preventing cancer development in normal cells and plays an important role in prompting a specific cell death mechanism in cancer cells with damaged cell death function. It is also known that autophagy inhibition increases the therapeutic efficacy by sensitizing cancer cells that are resistant to chemotherapy. However, the role of autophagy has not yet been fully understood in cancer treatment. Oral squamous cell carcinoma accounts for more than 90% of oral cancer and is the sixth most common cancer in the world. The incidence of oral cancer has increased by 50% over the last 20 years and the mortality rate is over 40% within 5 years after the onset. In oral cancers, the role of autophagy are described to look for tumor inhibitory in the early stages of tumor formation, like other cancers, indicating the dual functions involved in tumor cell survival include tumor progression stages. This review summarizes the various roles of autophagy in cancer cells and suggests the possibility of autophagy as a promising target for effective oral cancer therapy.

CYCLIN D1 GENE AMPLIFICATION IN ORAL SQUAMOUS CELL CARCINOMA USING DIFFERENTIAL POLYMERASE CHAIN REACTION (구강 편평세포암종에서 Differential Polymerase Chain Reaction에 의한 Cyclin D1 유전자의 증폭에 대한 연구)

  • Kim, Kee-Soon;Kim, Kyung-Wook;Lee, Jae-Hoon;Kim, Chang-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.4
    • /
    • pp.355-362
    • /
    • 2000
  • Neoplastic growth is characterized by alterations of oncogenes and antioncogenes. The interaction between activated oncogenes and functional deletion of antioncogene appears to be the driving force directing normal cells to uncontrolled growth resulting in tumor. In addition to those genes mentioned, other genes controlling the entry of cells into the cell cycle have recently been implicated in cancer development. The overexpression of the cyclin D1 gene, which has been mapped to 11q13, either by gene rearrangement or amplification has been noted in various malignant tumors. The product of the cyclin D1 gene forms a complex with cyclin-dependent protein kinases(CDK4) that governs a key transition in the cell cycle. The relationships between the overexpression of cyclin D1 assessed by immunihistochemistry and the amplification of the cyclin D1 gene by differential polymerase chain reaction(DPCR) using primers for dopamin D2 receptor gene in 13 cases of squamous cell carcinomas of the oral cavity have been studied. The semiquantitative assay of cyclin D1 amplification has been made by cyclin D1/dopamin D2 receptor(CD/DR) ratio. The results were as follows; 1. In the normal tissue and the tumor, the CD/DR ratios were 0.82 and 1.36 respectively. This implicates 1.65-fold amplification of cyclin D1 gene in tumor compared to that in normal tissue. 2. The tumor tissue which showed overexpression of cyclin D1 by immunohistochemistry revealed 2-fold amplification of cyclin D1 compared to the normal tissue. 3. The tumor tissue which showed mild expression of cyclin D1 by immunihistochemistry revealed 1.7-fold amplification of cyclin D compared to the normal tissue. 4. The cyclin D1 was overexpressed in the tumor tissue at the rate of 38%. Above results suggest that cyclin D1 has close correlation with the development of carcinoma in the oral cavity. But further studies were needed to elucidate the carcinogeneic mechanisms by comparative studies among cyclin D1, pRb and p53.

  • PDF

Loss of Heterozygosity and Microsatellite Instability at Multiple Tumor Suppressor Genes in Gastric Carcinomas (위암에서 여러 종양억제유전자 부위의 이형접합성 소실과 현미 부수체 불안정성)

  • Cho Young Gu;Kim Chang Jae;Park Cho Hyun;Kim Young Sil;Kim Su Young;Nam Suk Woo;Lee Sug Hyung;Yoo Nam Jin;Lee Jung Young;Park Won Sang
    • Journal of Gastric Cancer
    • /
    • v.3 no.4
    • /
    • pp.214-220
    • /
    • 2003
  • Purpose: The aim of this study was to investigate the frequency of loss of heterozygosity and the microsatellite instability at multiple tumor suppressor gene loci in gastric adenocarcinomas. Materials and Methods: Loss of heterozygosity and the microsatellite instability at several tumor suppressor gene loci were analyzed in 29 primary gastric carcinomas by using microdissection and the polymerase chain reaction. Results: Twenty-three ($79\%$) of the 29 cases demonstrated loss of heterozygosity at one or more loci. The frequency of loss of heterozygosity at the p53 locus was the highest ($63\%$) and those at the VHL, APC, p16, Rb, MEN1, BRCA1, DPC4, 3p21, and 16p13 region were $41\%,\;36\%,\;19\%,\;29\%,\;33\%,\;26\%,\;21\%,\;32\%,\;and\;11\%$, respectively. Compared with histological type, loss of heterozygosity was more common in diffuse-type gastric cancer (P<0.01). Interestingly, 9 of 10 tumors with allelic deletion at the p53 locus showed loss of heterozygosity at other tumor suppressor gene loci. The microsatellite instability was also detected in 6 ($20\%$) of the 29 cases at one or more loci. Conclusion: These data suggest that frequent loss of heterozygosity and the microsatellite instability at multiple tumor suppressor genes might be required for the development and the progression of gastric carcinomas and that p53 allelic loss may be the most frequent event in the development of gastric carcinomas.

  • PDF

HiF-1α siRNA and Cisplatin in Combination SuppressTumor Growth in a Nude Mice Model of Esophageal Squamous Cell Carcinoma

  • Liao, Hong-Ying;Wang, Gui-Ping;Gu, Li-Jia;Huang, Shao-Hong;Chen, Xiu-Ling;Li, Yun;Cai, Song-Wang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.473-477
    • /
    • 2012
  • Introduction: The esophagus squamous cell carcinoma (ESCC) is one of the most deadly malignances, and a current challenge is the development of effective therapeutic agents. Our present work addressed the effect of HIF-$1{\alpha}$ siRNA alone or in combination with cisplatin on the growth of ESCC in nude mice. Materials and Methods: Xenografts were established by inoculating ESCC TE-1 cells in nude mice, and transplanted tumors were treated with HIF-$1{\alpha}$ siRNA, cisplatin alone or together. Growth was assessed by measuring tumor volume. HIF-$1{\alpha}$ mRNA and protein expression were detected using RT-PCR and immunohistochemistry, respectively. Apoptosis of ESCC TE-1 cells was analyzed by flow cytometry. Results: In our nude mice model, HIF-$1{\alpha}$ siRNA effectively inhibited the growth of transplanted ESCC, downregulating HIF-$1{\alpha}$ mRNA and protein expression, and inducing ESCC TE-1 cell apoptosis. Notably when combinated with cisplatin, HIF-$1{\alpha}$ siRNA showed synergistic interaction in suppressing tumor growth. Furthermore, the proportion of apoptotic cells in HIF-$1{\alpha}$ siRNA plus cisplatin group was significantly higher than that in cisplatin or HIF-$1{\alpha}$ siRNA-treated groups (P<0.05). Conclusions: Down-regulated HIF-$1{\alpha}$ expression induced by siRNA could effectively suppress the growth of transplanted ESCC $in$ $vivo$. HIF-$1{\alpha}$ siRNA could enhance the cytotoxicity of cisplatin, which suggests that a combination of these two agents may have potential for therapy of advanced ESCC.

GLYCOSAMINOGLYCAN EXPRESSION IN PLEOMORPHIC ADENOMAS OF THE SALIVARY GLAND (타액선 다형성 선종에서 Glycosaminoglycan의 발현)

  • Kim, Seong-Joo;Kim, Chul-Hwan;Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Pleomorphic adenoma is the most common benign tumor in salivary glands, and occurred in frequency of 60% in parotid gland tumors, and 50% in submandibular gland tumors, and 25% in sublingual gland tumors. Histopathologically, pleomorphic adenoma is composed of epithelial cells and mesenchymal tissues, and called 'mixed tumor' because of morphological divergency. The cell structures of luminal area are composed of polyhedral and cuboidal secretory epithelial cells and modified myoepithelial cells around it, and mesenchymal tissue is composed of some myoepithelial cells and stromal tissue. In stromal tissue, myxoid change, chondroid change, or hyalinization can be seen even if bone tissue. In many studies, tumor cells of pleomorphic adenoma containing modified myoepithelial cell participate in synthesis of glycosaminoglycans. In this study, tissue sample of pleomorphic adenoma of human salivary gland were obtained from 20 surgical specimens, and all specimens were routinely fixed in 10% formalin and embedded. Serial 4-8${\mu}m$ thick sections were cut from paraffin blocks. The histopathologic evaluation was done with light microscopy. And, with immunohistochemical staining, characteristics of glycosaminoglycan were observed. And, for biochemical analysis of glycosaminoglycan, isolation of crude glycosaminoglycan from tumor tissue and immuno-blot analysis were carried out. With transmission electromicroscopy, tumor cells and biologic behavior of pleomorphic adenoma were observed with distribution and expression of glycosaminoglycan in tumor cells, The results were obtained as follows: 1. In immunohistochemical study, chondroitin 4-sulfate is highly postively stained in myxoid stromal tissue, and chondroitin 6-sulfate is highly positively stained in chondroid mesenchymal tissue, both glycosaminoglycans are positively stained in non-luminal cell of ductal area. 2. Dermatan sulfate and keratan sulfate is positively stained in periductal non-luminal tumor cells. 3. In immunohistochemical study, heparan sulfate is weakly stained in luminal cells and non-luminal cells around duct, and chondroid mesenchymal tissue. 4. In transmission electromicroscopic view, the tumor cells are composed of modified myoepithelial cells, and contain many microfilaments and well developed rough endoplasmic reticulum. 5. In Immuno-Blot analysis, the expression of glycosaminoglycans is expressed mostly in chondroitin 6-sulfate and chondroitin 4-sulfate. From the results obtained in this study, tumor cells of pleomorphic adenoma are composed of modified myoepithelial cells, and glycosaminoglycans of chondroitin 4-sulfate and chondroitin 6-sulfate mostly participate in the development of pleomorphic adenoma, but dermatan sulfate, keratan sulfate and heparan sulfate glycosaminoglycans were expressed variably.

Antitumor Effect of Schizandrin by Inhibiting Angiogenesis (Schizandrin의 신혈관형성억제에 의한 항암효과)

  • Yoon, Mi So;Kim, Do Yoon;Yu, Ho Jin;Park, Joo-Hoon;Jang, Sang Hee;Won, Kyung-Jong;Kim, Bokyung;Lee, Hwan Myung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.5
    • /
    • pp.687-692
    • /
    • 2012
  • Schizandra chinensis extract has been known to possess a variety of efficacy including antitumor. However, it remains unclear how schizandrin, which is a major biological active ingredient of Schizandra chinensis, exerts antitumor effect. This study was designed to investigate the mechanism by which schizandrin inhibits tumor growth and metastasis. In in vivo test using tumor model mice injected with B16BL6 cell line, mice treated with 10 and 100 ${\mu}g/ml$ schizandrin showed a significant inhibition by $73.79{\pm}6.43%$ and $90.46{\pm}1.72%$, respectively, compared with positive tumor controls. Schizandrin did not exert a significant toxicity for the normal cells (HUVECs) and tumor cell lines (A549, B16BL6, Du145, Huh7). Treatment with schizandrin at 10 and 100 ${\mu}g$/head significantly inhibited the tumor-induced angiogenesis by $68.04{\pm}32.21%$ and $103.8{\pm}34.99%$ compared with the positive control group, respectively. Using in vivo lung metastasis model, tumor metastasis assay revealed that 10 and 100 ${\mu}g$/head schizandrin significantly decreased the metastatic lung tumor by $37.51{\pm}8.15%$ and $75.53{\pm}4.38%$ compared with positive controls, respectively. On the other hand, schizandrin did not affect the adherence of B16BL6 cell line to extracellular matrix protein. These results demonstrate that schizandrin exerts inhibitory effect on tumor growth and metastasis by inhibiting angiogenesis. This study thus suggest that schizandrin may be a candidate molecule target for cancer drug development.

Influence of Hwanhonsan Extract against Chemically Induced and Xenografted Mice Tumor (환혼산(還魂散)이 실험적(實驗的)으로 유발(誘發)한 종양(腫瘍)에 미치는 영향(影響))

  • Song, Hyo-Won;Ryu, Do-Gon;Cho, Dong-Ki;Um, Sang-Sub;Kang, Sung-Do;Go, Jeoin-Soo;Sung, Yeun-Kyung;Yun, Young-Gap;Cho, Nam-Su;Lee, Chun-Woo;Kang, Soon-Soo
    • Journal of Oriental Physiology
    • /
    • v.14 no.2 s.20
    • /
    • pp.229-237
    • /
    • 1999
  • Hwanhonsan has been used for curing tumor as a Oriental medicine without any experimental evidence to support the rational basis for their clinical use. This experiment was carried out to evaluate the possible therapeutic or antitumoral effects of Hwanhonsan extract against cancer, and to study some mechanisms responsible for its effect. Some kind of tumors were induced by the typical application of 3-methylcholanthrene(MCA) or by the implantation of malignant tumor cells such as leukemia cells(3LL cells) or sarcoma cells(S180 cells) and FasII cells. Treatment of the Hwanhonsan extract(daily 1 mg/mouse, i.p.) was continued for 7 days prior to tumor induction and after that the treatment was lasted for 20 hrs. Against squamous cell carcinoma induced by MCA, Hwanhonsan decreased. not only the frequency of tumor production but also the number and weight of tumors per tumor bearing mice(TBM). Hwanhonsan also significantly suppressed the development of 3LL cells and S180 cells implanted tumors by frequency and their size, and some developed tumors were regressed by the continuous treatment of Hwanhonsan extract into TBM. However, when tumor was induced by FsaII cells implantation, the growth of implanted cells in mice was delayed by the water extract of Hwanhonsan until 7 days and then rapid growth ensued. In vitro treatment of Hwanhonsan extract had no inhibitory effect on the tumor induced by some kind of cell lines such as A431 cells strain but it significantly inhibited the proliferation of 3LL cells, S180 cells. These results suggested that Hwanhonsan extract exhibited a significant prophylactic benefits against tumors and its antitumor activity was manifested depending on the type of tumor cells.

  • PDF

Implication of High Mobility Group Box 1 (HMGB1) in Multicellular Tumor Spheroid (MTS) Culture-induced Epithelial-mesenchymal Transition (Multicellular tumor spheroid (MTS) 배양에 의한 EMT에서 HMGB1의 역할)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic contents, such as high mobility group box 1 (HMGB1), into the extracellular space. The release of HMGB1, a proinflammatory and tumor-promoting cytokine, plays an important role in promoting inflammation and metabolism during tumor development. Recently, HMGB1 was shown to induce the epithelial-mesenchymal transition (EMT) and metastasis. However, the underlying mechanism of the HMGB1-induced EMT, invasion, and metastasis is unclear. In this study, we showed that noninvasive breast cancer cells MCF-7 formed tightly packed, rounded spheroids and that the cells in the inner regions of a multicellular tumor spheroid (MTS), an in vitro model of a solid tumor, led to necrosis due to an insufficient supply of O2 and glucose. In addition, after 7 d of MTS culture, the EMT was induced via the transcription factor Snail. We also showed that HMGB1 receptors, including RAGE, TLR2, and TLR4, were induced by MTS culture. RAGE, TLR2, and TLR4 shRNA inhibited MTS growth, supporting the idea that RAGE/TLR2/TLR4 play critical roles in MTS growth. They also prevented MTS culture-induced Snail expression, pointing to RAGE/TLR2/TLR4-dependent Snail expression. RAGE, TLR2, and TLR4 shRNA suppressed the MTS-induced EMT. In human cancer tissues, high levels of RAGE, TLR2, and TLR4 were detected. These findings demonstrated that the HMGB-RAGE/TLR2/TLR4-Snail axis played a crucial role in the growth of the MTS and MTS culture-induced EMT.

FZD6 expression is negatively regulated by miR-199a-5p in human colorectal cancer

  • Kim, Bong-Kyu;Yoo, Hye-In;Kim, Injung;Park, Jongkeun;Yoon, Sungjoo Kim
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.360-366
    • /
    • 2015
  • Colorectal cancer (CRC), the third most common cancer worldwide, also has the highest rate of cancer-related morbidity and mortality. WNT signaling is initiated by binding of WNT to various receptors, including frizzleds (FZDs), and plays a critical role in CRC and other tumor development by regulating proliferation, differentiation, migration, apoptosis, and polarity. Among the members of the FZD family, FZD6 is broadly expressed in various tissues, and its overexpression has been reported in several cancers, suggesting an important role in cancer development. In this study, we investigated the expression of FZD6 in patients with CRC and found it to be increased in tumors, as compared to paired adjacent non-tumor tissues. Additionally, we found that FZD6 expression was negatively regulated by miR199a5p in CRC cells. These results suggest that overexpression of FZD6, mediated by reduced expression of miR-199a-5p, may play an important role in the development of CRC. [BMB Reports 2015; 48(6): 360-366]