• 제목/요약/키워드: tubular

검색결과 1,889건 처리시간 0.033초

Classifications of Tubular Surface with L1-Pointwise 1-Type Gauss Map in Galilean 3-space 𝔾3

  • Kisi, Ilim;Ozturk, Gunay
    • Kyungpook Mathematical Journal
    • /
    • 제62권1호
    • /
    • pp.167-177
    • /
    • 2022
  • In this manuscript, we handle a tubular surface whose Gauss map G satisfies the equality L1G = f(G + C) for the Cheng-Yau operator L1 in Galilean 3-space 𝔾3. We give an example of a tubular surface having L1-harmonic Gauss map. Moreover, we obtain a complete classification of tubular surface having L1-pointwise 1-type Gauss map of the first kind in 𝔾3 and we give some visualizations of this type surface.

SCFs in offshore two-planar tubular TT-joints reinforced with internal ring stiffeners

  • Ahmadi, Hamid;Imani, Hossein
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.1-22
    • /
    • 2022
  • The majority of tubular joints commonly found in offshore jacket structures are multi-planar. Investigating the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works. However, due to the diversity of joint types and loading conditions, a number of quite important cases still exist that have not been studied thoroughly. Among them are internally ring-stiffened two-planar TT-joints subjected to axial loading. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available numerical and experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in two-planar tubular TT-joints reinforced with internal ring stiffeners subjected to two types of axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new SCF parametric equations for the fatigue analysis and design of axially-loaded two-planar TT-joints reinforced with internal ring stiffeners.

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

Experimental studies on behaviour of tubular T-joints reinforced with grouted sleeve

  • Jiang, Shouchao;Guo, Xiaonong;Xiong, Zhe;Cai, Yufang;Zhu, Shaojun
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.585-596
    • /
    • 2017
  • Tubular joints have been widely used in offshore platforms and space structures due to their merits such as easy fabrication, aesthetic appearance and better static strength. For existing tubular joints, a grouted sleeve reinforced method was proposed in this paper. Experimental tests on five tubular T-joints reinforced with the grouted sleeve and two conventional tubular T-joints were conducted to investigate their mechanical behaviour. A constant axial compressive force was applied to the chord end to simulate the compressive state of the chord member during the tests. Then an axial compressive force was applied to the top end of the brace member until the collapse of the joint specimens occurred. The parameters investigated herein were the grout thickness, the sleeve length coefficient and the sleeve construction method. The failure mode, ultimate load, initial stiffness and deformability of these joint specimens were discussed. It was found that: (1) The grouted sleeve could change the failure mode of tubular T-joints. (2) The grouted sleeve was observed to provide strength enhancement up to 154.3%~172.7% for the corresponding un-reinforced joint. (3) The initial stiffness and deformability were also greatly improved by the grouted sleeve. (4) The sleeve length coefficient was a key parameter for the improved effect of the grouted sleeve reinforced method.

비틀림 모멘트가 부가되는 일체형 중공 드라이브 샤프트의 구조 안정성 분석 (Investigation of Structural Safety of Monobloc Tubular Drive Shaft Subjected to Torque)

  • 국대선;안동규;이호진;정종훈
    • 한국정밀공학회지
    • /
    • 제32권12호
    • /
    • pp.1073-1080
    • /
    • 2015
  • A drive shaft is used to transmit torque and rotation through the connection of components of a drive train. Recently, a monobloc drive shaft without welding regions is developed to improve the safety of the drive shaft. The drive shaft bears the shear stress induced by torque. The objective of this paper is to investigate into the structural safety of a monobloc tubular drive shaft subjected to torque. Elasto-plastic finite element (FE) analysis is performed to estimate the deformation behavior of the drive shaft and stress-strain distribution in the drive shaft. Several techniques are used to create finite element (FE) model of the monobloc tubular drive shaft subjected to torque. Through the comparison of the results of FE analyses with those of experiments from the viewpoint of rotational angle, appropriate correction coefficients for different load conditions are estimated. The safety of the tubular drive shaft is examined using the results of FE analyses for different load conditions. Finally, it is noted that the designed tubular drive shaft has a sufficient structural safety.

관형 고체산화물연료전지 테스트 지그 최적화 (Optimal Design for Tubular SOFC Testing Jig)

  • 최훈;안권성;신창우;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.303-306
    • /
    • 2009
  • High temperature solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. Solid oxide fuel cells in several different designs have been investigated; these include planar and tubular geometries. The tubular type cell is widely researched due to it have advantages about thermal expansion and sealing issues. Unfortunately, lab scale tubular cell for testing has thermal expansion and sealing problems. The previous Jig for lab scale tubular cell testing has many sealing problems. When we feed fuel gas to jig inlet, ceramic glue sealant has amount of gas expansion pressure, because temperature of feeding gas changes ambient temperature to high temperature ($700{\sim}900^{\circ}C$). Furthermore, when we carry out long time test, something like degradation test, crack of ceramic glue sealant due to weakness of mechanical properties can make stop working the test. Additionally, we reduce setting process for assembling, because micanite is not required drying or debinding process.

  • PDF

A Minimally Invasive lumbar Spine Surgery Technique Using a Modified Thoracoport : Proposal of a New Tubular Retractor

  • Park, Kwang-Woo;Park, Chan-Woo;Park, Jin-Soo;Lee, Sang-Gu
    • Journal of Korean Neurosurgical Society
    • /
    • 제40권4호
    • /
    • pp.296-299
    • /
    • 2006
  • Recently the trend of surgical procedure for treatment of lumbar benign disease is a minimally invasive surgery due to small incision, minimal blood loss, and a short hospital day. By using a microscope or an endoscope, and other surgical equipment, a delicate manipulation in a narrow space became feasible, consequently, to secure a wider view with small incision, appropriate retractors are required. But the various tubular retractor systems are expensive and have some problems. We modified Thoracoport [Auto Suture Co., Norwalk, CT] by making a window at the distal end of trocar and used it as a tubular retractor in surgical procedure for treatment of lumbar benign disease. This modified tubular retractor is docked closely on the curved lamina and provides a wider view. We used it as a tubular retractor also in lumbar bilateral decompression involving a unilateral approach. But this trocar has the limited sizes [diameter and length], and also it is difficult to fix the retractor or change the direction of retractor. And then, we propose a more modified Thoracoport with various sizes and attaching the settling holders to the head of tubular retractor to be able to fix the retractor.

Can Ultrasound be Used to Differentiate Tubular Adenomas of Breast from Fibroadenomas or Carcinoma?

  • Fu, Ying;Miao, Li-Ying;Ge, Hui-Yu;Mei, Fang;Wang, Jin-Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1269-1274
    • /
    • 2014
  • Breast tubular adenomas are rare benign breast tumors and detailed descriptions of their sonographic appearance are necessary for differential diagnosis from fibroadenomas or breast cancers. This study investigated twenty-one histology-proved tubular adenomas in 17 patients and also included 48 fibroadenomas in 35 patients as a control group. There was no significant difference between the two groups with clinical presentation, which was age, tumor location, tumor number (p>0.05). Statistic analysis showed three significant factors in the differential diagnosis of tubular adenomas and fibroadenomas, including macro-lobulation (p=0.01), "tiny branch like" patterns (p=0.001) and vascularity (p=0.02). Other ultrasonographic features such as echogenicity, border, uniformity of echotexture, posterior acoustic enhancement, lateral wall shadowing were of no clinical significance (p>0.05). Calcifications were seen in three tubular adenomas which were different from those of carcinomas. Although tubular adenomas have some typical characteristics on sonography, surgery and core needle biopsy are still needed for complex cases to exclude progress to malignancy.

Seismic analysis of RC tubular columns in air-cooled supporting structure of TPP

  • Wang, Bo;Yang, Ke;Dai, Huijuan;Bai, Guoliang;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.581-598
    • /
    • 2020
  • This paper aims to investigate the seismic behavior and influence parameters of the large-scaled thin-walled reinforced concrete (RC) tubular columns in air-cooled supporting structures of thermal power plants (TPPs). Cyclic loading tests and finite element analysis were performed on 1/8-scaled specimens considering the influence of wall diameter ratio, axial compression ratio, longitudinal reinforcement ratio, stirrup reinforcement ratio and adding steel diagonal braces (SDBs). The research results showed that the cracks mainly occurred on the lower half part of RC tubular columns during the cyclic loading test; the specimen with the minimum wall diameter ratio presented the earlier cracking and had the most cracks; the failure mode of RC tubular columns was large bias compression failure; increasing the axial compression ratio could increase the lateral bearing capacity and energy dissipation capacity, but also weaken the ductility and aggravate the lateral stiffness deterioration; increasing the longitudinal reinforcement ratio could efficiently enhance the seismic behavior; increasing the stirrup reinforcement ratio was favorable to the ductility; RC tubular columns with SDBs had a much higher bearing capacity and lateral stiffness than those without SDBs, and with the decrease of the angle between columns and SDBs, both bearing capacity and lateral stiffness increased significantly.

응집제와 관형막을 활용한 CMP 폐수 처리 가능성 연구 (The Feasibility Study of CMP Wastewater Treatment Using Tubular Membrane and Coagulants)

  • 정호찬;정철중;송자연;김연국;이선용
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.639-645
    • /
    • 2012
  • The purpose of this study is to identify the possibility of the CMP wastewater treatment from semiconductor fabrication under operating tubular membrane with coagulants. To find suitable coagulants treating CMP wastewater, we conducted Jar-test. After Jar-test experiments suitable coagulants are PAC(17%), $Ca(OH)_2$ and optimum coagulant dosage is PAC(17%) 10mg/L, $Ca(OH)_2$ 110 ~ 120mg/L. Based on these results, the tubular membrane was applied to CMP wastewater, the turbidity removal efficiency is $Ca(OH)_2$ > PAC(17%) > Nothing. The fast cross-flow velocity and backwash process what are operating characteristics of tubular membrane can be stable CMP wastewater treatment. But when the coagulant and tubular membrane are used at the same time, the withdraw and treatment of the CMP wastewater are possibile. However further treatment process needs if treated water will be used for semiconductor fabrications.