• 제목/요약/키워드: tube scanner

검색결과 25건 처리시간 0.025초

Evaluation of Images Depending on an Attenuation Correction in a Brain PET/CT Scan

  • Choi, Eun-Jin;Jeong, Mon-Taeg;Dong, Kyung-Rae;Kwak, Jong-Gil;Choi, Ji-Won;Ryu, Jae-Kwang
    • 방사선산업학회지
    • /
    • 제12권4호
    • /
    • pp.267-276
    • /
    • 2018
  • A Hoffman 3D Brain Phantom was used to evaluate two PET/CT scanners, BIO_40 and D_690, according to the radiation dose of CT (low, medium and high) at a fixed kilo-voltage-peak (kVp) with the tube current(mA) varied in 17~20 stages(Bio_40 PET/CT scanner: the tube voltage was fixed to 120 kVp, the effective tube current(mAs) was increased from 33 mAs to 190 mAs in 10 mAs increments, D_690 PET/CT scanner: the tube voltage was fixed to 140 kVp, tube current(mA) was increased from 10 mAs to 200 mAs in 10 mAs increments). After obtaining the PET image, an attenuation correction was conducted based on the attenuation map, which led to an analysis of the difference in the image. First, the ratio of white to gray matter for each scanner was examined by comparing the coefficient of variation (CV) depending on the average ratio. In addition, a blind test was carried out to evaluate the image. According to the study results, the BIO_40 and D_690 scanners showed a <1% change in CV value due to the tube current conversion. The change in the coefficients of white and gray matter showed that the Z value was negative for both scanners, indicating that the coefficient of gray matter was higher than that of white matter. Moreover, no difference was observed when the images were compared in a blind test.

나노미터 영역 길이 측정 위한 미터 소급성을 갖는 원자간력 현미경 개발 (Development of a Metrological Atomic Force Microscope for the Length Measurements of Nanometer Range)

  • 김종안;김재완;박병천;엄태봉;홍재완
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.75-82
    • /
    • 2004
  • A metrological atomic force microscope (M-AFM) was developed fur the length measurements of nanometer range, through the modification of a commercial AFM. To eliminate nonlinearity and crosstalk of the PZT tube scanner of the commercial AFM, a two-axis flexure hinge scanner employing built-in capacitive sensors is used for X-Y motion instead of PZT tube scanner. Then two-dimensional displacement of the scanner is measured using two-axis heterodyne laser interferometer to ensure the meter-traceability. Through the measurements of several specimens, we could verify the elimination of nonlinearity and crosstalk. The uncertainty of length measurements was estimated according to the Guide to the Expression of Uncertainty in Measurement. Among several sources of uncertainty, the primary one is the drift of laser interferometer output, which occurs mainly from the variation of refractive index of air and the thermal stability. The Abbe error, which is proportional to the measured length, is another primary uncertainty source coming from the parasitic motion of the scanner. The expanded uncertainty (k =2) of length measurements using the M-AFM is √(4.26)$^2$+(2.84${\times}$10$^{-4}$ ${\times}$L)$^2$(nm), where f is the measured length in nm. We also measured the pitch of one-dimensional grating and compared the results with those obtained by optical diffractometry. The relative difference between these results is less than 0.01 %.

X-ray CT Scanner를 이용한 MAGAT (Methacrylic Acid, Gelatin Gel and THPC) 중합체 겔 선량계의 선량 반응성 연구 (A Study on Dose Response of MAGAT (Methacrylic Acid, Gelatin Gel and THPC) Polymer Gel Dosimeter Using X-ray CT Scanner)

  • 정재용;이충일;민정환;김연래;이성용;서태석
    • 한국의학물리학회지:의학물리
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2010
  • CT 촬영 장치를 기반으로 한 MAGAT (Methacrylic Acid, Gelatin gel And THPC) 정상 산소 중합체 겔 선량계의 화합물 조성비와 CT 영상 스캔 인자의 변화에 따른 선량 반응성을 평가하였다. 다양한 농도의 메타크릴산(MAA, MethAcrylic Acid)과 젤라틴을 조성하여 MAGAT 선량계를 제작하고 20 Gy까지의 방사선을 조사하였다. 조사된 겔 선량계는 CT 촬영 장치(Brilliance Big bore scanner, Phillps, Netherlands)를 이용하여 다양한 스캔 인자(관전압, 관전류, 단면두께)로 같은 위치에서 20회까지의 CT 영상을 획득하였다. 획득된 영상으로 $N_{CT}$-선량 반응곡선($N_{CT}$-dose response), 선량 감도(dose sensitivity), 선량 분해능(dose resolution)을 측정, 평가하였다. 각 조성비 별 MAGAT 선량계의 $N_{CT}$-선량 반응곡선에서 메타크릴산과 젤라틴의 양이 증가함에 따라 기울기와 절편이 증가하였다. 선량 감도는 $0.338{\pm}0.08$에서 $0.859{\pm}0.1$까지 나타났고 메타크릴산이 증가, 젤라틴이 감소할수록 증가하였으나 그 변화는 메타크릴산 농도의 증가에 따라 감도가 증가되는 것에 비해 아주 작은 변화를 보였다. 선량 분해능은 약 2.6에서 6 Gy까지 다양하게 나타났으며 감도와 영상 내의 노이즈에 의해 큰 변화를 보였다. 영상 스캔 인자의 변화에 대한 반응곡선은 관전압, 관전류, 단면두께의 변화에 따른 곡선의 기울기와 감도는 큰 변화를 보이지 않았으나 영상 내의 노이즈(평균 CT number의 표준편차)는 위의 3개의 인자가 증가할수록 감소함을 보였다. 본 연구는 CT 촬영장치를 이용한 MAGAT 중합체 겔의 선량 반응성을 평가하여 적정한 조성비와 스캔 인자를 얻을 수 있었으며 CT를 기반으로 한 3차원 선량계를 간단하고 효율적으로 임상에 적용할 수 있을 것으로 사료된다.

CT 영상기반 방사선치료계획시스템을 위한 CT수 대 물리적 밀도 변환에 관한 CT 스캐닝 매개변수의 의존성 (The Dependence of CT Scanning Parameters on CT Number to Physical Density Conversion for CT Image Based Radiation Treatment Planning System)

  • 백민규;김종언
    • 한국방사선학회논문지
    • /
    • 제11권6호
    • /
    • pp.501-508
    • /
    • 2017
  • 방사선치료에 사용하는 CT 스캐너에 의해 획득된 CT 및 CBCT 전자밀도팬텀의 CT영상부터 CT수 대 물리적 밀도 변환에 관한 CT 스캐닝 매개변수의 의존성은 실험으로 분석하였다. CT수는 관전류량, 슬라이스 두께, 영상재구성 필터, 시야 그리고 팬텀 용적의 크기에 대해 의존하지 않았다. 그러나 CT수는 관전압과 팬텀 횡단면적 크기에 의존하였다. 결과로서, 물리적 밀도 1이상의 범위에 대하여, 90과 120 kVp 사이의 관전압에서 관측된 최대 CT수 차이는 27%이었고, 그리고 CT 몸통과 머리 전자밀도팬텀 사이에서 관측된 최대 CT수 차이는 15%이었다.

Optimization of exposure parameters and relationship between subjective and technical image quality in cone-beam computed tomography

  • Park, Ha-Na;Min, Chang-Ki;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • 제49권2호
    • /
    • pp.139-151
    • /
    • 2019
  • Purpose: This study was performed to investigate the effect of exposure parameters on image quality obtained using a cone-beam computed tomography (CBCT) scanner and the relationship between physical factors and clinical image quality depending on the diagnostic task. Materials and Methods: CBCT images of a SedentexCT IQ phantom and a real skull phantom were obtained under different combinations of tube voltage and tube current (Alphard 3030 CBCT scanner, 78-90 kVp and 2-8 mA). The images obtained using a SedentexCT IQ phantom were analyzed technically, and the physical factors of image noise, contrast resolution, spatial resolution, and metal artifacts were measured. The images obtained using a real skull phantom were evaluated for each diagnostic task by 6 oral and maxillofacial radiologists, and each setting was classified as acceptable or unacceptable based on those evaluations. A statistical analysis of the relationships of exposure parameters and physical factors with observer scores was conducted. Results: For periapical diagnosis and implant planning, the tube current of the acceptable images was significantly higher than that of the unacceptable images. Image noise, the contrast-to-noise ratio (CNR), the line pair chart on the Z axis, and modulation transfer function (MTF) values showed statistically significant differences between the acceptable and unacceptable image groups. The cut-off values obtained using receiver operating characteristic curves for CNR and MTF 10 were useful for determining acceptability. Conclusion: Tube current had a major influence on clinical image quality. CNR and MTF 10 were useful physical factors that showed significantly associations with clinical image quality.

튜브 벤딩시 스프링백 보정각 추세선 도출에 관한 연구 (A Study on the Derivation of Springback Compensation Angle Trend Line in Tube Bending)

  • 이덕영;오성국;최보성
    • 소성∙가공
    • /
    • 제29권4호
    • /
    • pp.188-193
    • /
    • 2020
  • Piping work of large ships or offshore plants is often done in a narrow and confined space, requiring precise bending and safety. In order to realize an accurate bending angle, it is very important to predict and correct a deformation that may be caused by elasticity in the bending process, that is, an angular deviation due to springback. Therefore, by using CAE analysis to develop a correction angle model for springback based on multiple tube bending angles and using trend line data derived from this correction angle model, at bending the tube as the diameter of the base former and the tube outer diameter change, the springback compensation angle at any angle can be obtained. In this study, the bending mechanism was analyzed to increase the bending precision, and a correction angle model was developed and a trend line was derived in consideration of springback occurring in the bending process. In order to derive a more accurate and reliable trend line, a tube tensile test was performed, and the reliability of the corrected angle trend line was verified by comparing the bending angle measurement and analysis results with a 3D scanner.

유동층보일러 수냉벽튜브 결함평가를 위한 원격자장 스캐너 시뮬레이션에 관한 연구 (Simulation of Remote Field Scanner for Defect Evaluation of Water Wall Tube Within the Fluidized Bed Boiler)

  • 길두송;정계조;서정석;김학준;권찬울
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.145-150
    • /
    • 2020
  • 유동층보일러를 구성하는 요소 중 하나인 수냉벽튜브는 외부의 고온 연소 가스를 이용해 물을 증기로 가열하는 튜브군의 하나로써, 보일러를 이용한 전력생산에 중요한 역할을 담당하지만, 고온 가스 및 유동매체로 인해 마모 및 부식이 심하게 일어나면 누수가 발생하게 되고, 누수로 인한 2차 피해도 발생될 뿐만 아니라, 발전 효율이 현저히 떨어지게 되어 수냉벽튜브의 유지보수는 매우 중요하다. 본 연구에서는 원격장 기반의 발신자(Exciter) 센서 설계, 원격장 와전류 시스템 구성, 수냉벽튜브 외벽 결함평가를 목적으로 하였으며, 이를 위한 발신자 형상의 센서 설계를 시작으로, 수냉벽튜브의 크기, 재질, 주파수, Lift-Off (센서와 수냉벽튜브 사이의 거리) 등 여러 가지 요인에 따른 시험을 진행하여 그에 따른 최적의 발신자 센서를 설계하였다.

Analysis of the priority of anatomic structures according to the diagnostic task in cone-beam computed tomographic images

  • Choi, Jin-Woo
    • Imaging Science in Dentistry
    • /
    • 제46권4호
    • /
    • pp.245-249
    • /
    • 2016
  • Purpose: This study was designed to evaluate differences in the required visibility of anatomic structures according to the diagnostic tasks of implant planning and periapical diagnosis. Materials and Methods: Images of a real skull phantom were acquired under 24 combinations of different exposure conditions in a cone-beam computed tomography scanner (60, 70, 80, 90, 100, and 110 kV and 4, 6, 8, and 10 mA). Five radiologists evaluated the visibility of anatomic structures and the image quality for diagnostic tasks using a 6-point scale. results: The visibility of the periodontal ligament space showed the closest association with the ability to use an image for periapical diagnosis in both jaws. The visibility of the sinus floor and canal wall showed the closest association with the ability to use an image for implant planning. Variations in tube voltage were associated with significant differences in image quality for all diagnostic tasks. However, tube current did not show significant associations with the ability to use an image for implant planning. conclusion: The required visibility of anatomic structures varied depending on the diagnostic task. Tube voltage was a more important exposure parameter for image quality than tube current. Different settings should be used for optimization and image quality evaluation depending on the diagnostic task.

접촉모드 AFM의 시스템 분석 및 제어 (Analysis and Control f Contact Mode AFM)

  • 정회원;심종엽;권대갑
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.99-106
    • /
    • 1998
  • Recently, scientists introduced a new type of microscope capable of investigating nonconducting surfaces in an atomic scale, which is called AFM (Atomic Force Microscope). It was an innovative attempt to overcome the limitation of STM (Scanning Tunnelling Microscope) which has been able to obtain the image of conducting surfaces. Surfaces of samples are imaged with atomic resolution. The AFM is an imaging tool or a profiler with unprecedented 3-D resolution for various surface types. The AFM technology, however, leaves a lot of room for improvement due to its delicate and fragile probing mechanism. One of the room for improvements is gap control between probe tip and sample surface. Distance between probe tip and sample surface must be kept in below one Angtrom in order to measure the sample surface in Angstrom resolution. In this paper, AFM system modeling, experimental system identification and control scheme based on system identification are performed and finally sample surface is measured by home-built AFM with such a control scheme.

  • PDF

A Review of Organ Dose Calculation Tools for Patients Undergoing Computed Tomography Scans

  • Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • 제46권4호
    • /
    • pp.151-159
    • /
    • 2021
  • Background: Computed tomography (CT) is one of the crucial diagnostic tools in modern medicine. However, careful monitoring of radiation dose for CT patients is essential since the procedure involves ionizing radiation, a known carcinogen. Materials and Methods: The most desirable CT dose descriptor for risk analysis is the organ absorbed dose. A variety of CT organ dose calculators currently available were reviewed in this article. Results and Discussion: Key common elements included in CT dose calculators were discussed and compared, such as computational human phantoms, CT scanner models, organ dose database, effective dose calculation methods, tube current modulation modeling, and user interface platforms. Conclusion: It is envisioned that more research needs to be conducted to more accurately map CT coverage on computational human phantoms, to automatically segment organs and tissues for patient-specific dose calculations, and to accurately estimate radiation dose in the cone beam computed tomography process during image-guided radiation therapy.