• Title/Summary/Keyword: tube formation

Search Result 484, Processing Time 0.028 seconds

LIPUS Promotes Endothelial Differentiation and Angiogenesis of Periodontal Ligament Stem Cells by Activating Piezo1

  • Rui Hu;Zheng-yan Yang;Yue-heng Li;Zhi Zhou
    • International Journal of Stem Cells
    • /
    • v.15 no.4
    • /
    • pp.372-383
    • /
    • 2022
  • Background and Objectives: Low-intensity pulsed ultrasound (LIPUS) promotes differentiation and regulates biological functions of various stem cells, but its effect on the endothelial differentiation of periodontal ligament stem cells (PDLSCs) is unclear. This study investigated the effect of LIPUS on endothelial differentiation and angiogenesis in PDLSCs and the role of the mechanically sensitive ion channel Piezo1 in this process. Methods and Results: PDLSCs obtained from healthy people were used for endothelial induction, and 10 ㎍/ml lipopolysaccharide (LPS) was used to simulate the inflammatory state. The induced cells were treated with LIPUS (50 mW/cm2, 1.5 MHz) to study its effect on the endothelial differentiation of PDLSCs and the tube formation of differentiated cells. PCR, flow cytometry, immunofluorescence, and Matrigel tube formation assays were used to detect the differentiation and tube formation of PDLSCs. GsMTx4 was used to inhibit the expression of Piezo1, and the role of the Piezo1 pathway in the endothelial differentiation and microvascular formation of PDLSCs after LIPUS treatment was studied. The data showed that LIPUS increased endothelial differentiation and angiogenesis in PDLSCs under inflammatory or noninflammatory conditions. The use of an inhibitor weakened the effect of LIPUS. Conclusions: This study demonstrated that LIPUS can activate the expression of Piezo1 and promote the endothelial differentiation and microvascular formation of PDLSCs.

Fermented Ginseng with Bifidobacterium Inhibits Angiogenesis of Human Umbilical Endothelial Cells in vitro and in vivo

  • Ko, Yu-Jin;Park, Seung-Hee;Park, Byung-Chul;Lee, Yong-Hwa;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.89-94
    • /
    • 2007
  • Ginseng is a widely-used alternative medicine for the treatment of cancer, diabetes, and cardiovascular diseases. Active components of P. ginseng, absorbed through gastrointestinal tract are the fermented ginsenosides by intestinal microorganisms. In the present study, we investigated the inhibitory effects of fermented ginseng with bifidobacterium (FGb) on the angiogenesis by analyzing in vitro tube formation and invasion assay using human umbilical vein endothelial cells (HUVECs), and in vivo angiogenesis using chick chorioallantoic membrane (CAM) assay. Treatment with FGb inhibited tube-like structure formation in a concentration-dependent manner. In addition, FGb significantly suppressed HUVEC invasion through Matrigel. Moreover, FGb dosedependently inhibited VEGF-induced angiogenesis in a CAM assay. These results suggest that FGb is a valuable anti-angiogenic remedy.

Measurements of Plasma Flows in Micro-Tube/Channel Using Micro-PIV (Micro-PIV를 이용한 마이크로 튜브/채널 내에서의 혈장유동 측정)

  • Ko Choon Sik;Yoon Sang Youl;Ji Ho Seong;Kim Jae Min;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.87-90
    • /
    • 2003
  • In this paper, flow characteristics of plasma flow in a micro-tube were investigated experimentally using Micro-PIV. For comparision, the experiments were repeated for DI-water instead of plasma. Both velocity profiles of Plasma and DI-water are well agreed with the theoretical velocity distribution of newtonian fluid. We also carried out generating plasma-in-oil droplet formation at a Y-junction microchannel. In order to clarify the hydrodynamic aspects involved in plasma droplet formation. Rhodamin B were mixed with plasma only for visualization of plasma droplet.

  • PDF

The Experimental Study of Glycyrrhiza uralensis on Wound Healing by Antioxidant Effect (감초 추출물의 항산화 효과에 의한 상처 치료 가능성 연구)

  • Lee, Yun Kyung;Roh, Seok Sun
    • Journal of Haehwa Medicine
    • /
    • v.25 no.1
    • /
    • pp.145-153
    • /
    • 2016
  • Objectives : The purpose of this study is to evaluate the wound healing potential of Glycyrrhiza uralensis extract. Methods : Free radical scavenging activity tests for DPPH, peroxynitrite (ONOO) and hydroxyl radical (${\cdot}OH$) and total phenolic contents of Glycyrrhiza uralensis extract were conducted. Tube formation assay was performed using human umbilical vein endothelial cells (HUVECs). Results : The results showed that Glycyrrhiza uralensis extract exerted inhibitory effects on ONOO and ${\cdot}OH$. Tube formation in HUVEC was increase in a dose dependent manner. Conclusions : These results show the potential to promote the wound healing process by Glycyrrhiza uralensis extract.

Measurements of Plasma Flows in Micro-Tube/Channel Using Micro-PIV (Micro-PIV를 이용한 마이크로 튜브/채널 내에서의 혈장유동측정)

  • Ko, Choon-Sik;Yoon, Sang-Youl;Ki, Ho-Seong;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.587-593
    • /
    • 2004
  • In this paper, flow characteristics of plasma flow in a micro-tube were investigated experimentally using micro particle image velocimetry(micro-PIV). For comparison, the experiments were repeated for deionized(DI) wale. instead of plasma. Both velocity profiles of plasma and do-ionized water are well agreed with the theoretical velocity distribution of newtonian fluid. We also carried out generating plasma-in-oil droplet formation at a Y-junction microchannel. In order to clarify the hydrodynamic aspects involved in plasma droplet formation, Rhodamine-B were mixed with plasma only for visualization of plasma droplet. With oil as the continuous phase and plasma as the dispersed phase, plasma droplet can be generated in a continuous phase flow at a Y-junction. For given experimental parameters, regular-sized droplets are reproducibly formed at a uniform flow conditions.

Assessment of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tubes using Dynamic Materials Model (동적재료모델을 활용한 열간 후방압출된 Ti-6Al-4V튜브의 성형결함 해석)

  • 염종택;심인규;박노광;홍성석;심인옥
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.566-571
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. Dynamic material model(DMM) including Ziegler's instability criterion was employed to predict the forming defects such as shear band, inner and/or surface cracks. This approach was coupled to the internal variables generated from FE analysis. The simulation results fur the backward extrusion were compared with the experimental observation. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The formation of forming defects in the extruded tube was attributed to non-uniform distribution of strain, strain rate and temperatures in the extruded tubes for the given test conditions.

A Novel Mediastinal Drainage Tube for Mediastinitis

  • Yhang, Jun Ho;Jang, In-Seok;Kim, Sung Hwan;Park, Hyun Oh;Kang, Dong Hoon;Choi, Jun Young
    • Journal of Chest Surgery
    • /
    • v.48 no.5
    • /
    • pp.378-379
    • /
    • 2015
  • Mediastinitis is a life-threatening disease, and effective drainage is needed to treat mediastinitis with abscess formation. We recommend an alternative drainage method using chest tube binding with a Silastic Penrose drainage tube. The use of a Silastic Penrose drainage tube may help to manage mediastinitis with abscess formation. This method facilitates effective draining and prevents tissue adhesion.

Effect of the Pressure Formation at the Tip of the Melt Delivery Tube in Close-coupled Nozzles in Gas Atomization Process

  • Unal, Rahmi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.477-478
    • /
    • 2006
  • Close-coupled atomizers are of great interest and controlling their performance parameters is critical for metal powder producing and spray forming industries. In this study, designed close-coupled nozzle systems were used to investigate the effect of the nozzle types and protrusion length of the melt delivery tube on the pressure formation at the melt delivery tube tip. The observed metal flow rate was not behaving as what was earlier assumed, namely that, deeper aspiration enhanced metal flow rate. Higher aspiration pressure at the tip of the melt delivery tube increases the stability of atomization process.

  • PDF

Hesperetin Inhibits Vascular Formation by Suppressing of the PI3K/AKT, ERK, and p38 MAPK Signaling Pathways

  • Kim, Gi Dae
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.299-306
    • /
    • 2014
  • Hesperetin has been shown to possess a potential anti-angiogenic effect, including vascular formation by endothelial cells. However, the mechanisms underlying the potential anti-angiogenic activity of hesperetin are not fully understood. In the present study, we evaluated whether hesperetin has anti-angiogenic effects in human umbilical vascular endothelial cells (HUVECs). HUVECs were treated with 50 ng/mL vascular endothelial growth factor (VEGF) to induce proliferation as well as vascular formation, followed by treatment with several doses of hesperetin (25, 50, and $100{\mu}M$) for 24 h. Cell proliferation and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. In addition, cell signaling related to cell proliferation and vascular formation was analyzed by western blot. Furthermore, a mouse aorta ring assay was performed to confirm the effect of hesperetin on vascular formation. Hesperetin treatment did not cause differences in HUVECs proliferation. However, hesperetin significantly inhibited VEGF-induced cell migration and tube formation of HUVECs (P<0.05). Moreover, hesperetin suppressed the expression of ERK, p38 MAPK, and PI3K/AKT in the VEGF-induced HUVECs. In an ex vivo model, hesperetin also suppressed microvessel sprouting of mouse aortic rings. Taken together, the findings suggest that hesperetin inhibited vascular formation by endothelial cells via the inhibition of the PI3K/AKT, ERK and p38 MAPK signaling.

Hesperidin Inhibits Vascular Formation by Blocking the AKT/mTOR Signaling Pathways

  • Kim, Gi Dae
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.221-229
    • /
    • 2015
  • Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and $100{\mu}M$) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.