• Title/Summary/Keyword: tsunami

Search Result 395, Processing Time 0.027 seconds

Analysis of the Tsunami Inundation Trace and it's Expectation Area in Coast Using GIS (GIS를 이용한 지진해일시 연안의 침수 흔적 및 예상 지역 분석)

  • Lee Hyung-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.175-182
    • /
    • 2006
  • The efficient management for minimum losses and demage precautions of fragile region against coastal disasters such as seismic waves and seawater overflows is proceeding continually. This study is to analyze inundation trace and extract expected damage areas with historic records of tsunami using Geographic Information System. Creating a digital elevation model of the Mangsang and the Nobong region in the east coast, we marked inundation record of tsunami and forecasted the flood area with a seismic wave height between 3 m and 5 m. The inundation trace layers and the expected damage areas on the cadastral map layer were superimposed individually. Consequently, the range and lot numbers of inundation expected area were calculated and inundation areas of 5 m tsunami were increased by 2.8 times than 3 m tsunami in case of subject regions. Analyzed results are expected to use evacuation work in case of seismic waves and to predict the compensation of the damaged area. And this study is expected to use suitable countermeasure for prevention from natural disasters.

Numerical Study on Propagation Characteristics of Tsunami Induced by Tokai, Tonankai and Nankai Massive Earthquakes (토카이, 토난카이 및 난카이 대규모 지진으로 인한 지진해일의 전파특성에 관한 수치적 연구)

  • Kawasaki, Koji;Suzuki, Kazuki;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.386-393
    • /
    • 2013
  • After the 2011 Tohoku Earthquake, it has been pointed out that Tokai, Tonankai and Nankai massive earthquakes with a magnitude of 9.0 could strike the Pacific coasts in western Japan. This study aims at investigating numerically propagation characteristics of tsunami generated by a 9.0 magnitude Tokai, Tonankai and Nankai massive earthquakes on the Pacific coasts and three major bays in Japan, Tokyo Bay, Ise Bay and Osaka Bay. It was revealed from the numerical results that the tsunami heights on the Pacific coasts for M9.0 earthquake were about twice as much as those for M8.7 earthquake and the first tsunami arrival time was faster at some areas distant from the tsunami source. Moreover, high water level in the bays was recognized to continue for a long time because of the enclosed bays.

A Safety Evaluation of Moored Ship Motions by Observed Tsunami Profile

  • Cho, Ik-Soon;Kubo, Masayoshi;Kong, Gil-Young;Lee, Yun-Sok;Lee, Choong-Ro
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.47-52
    • /
    • 2006
  • Recent warnings indicate that there is a potential risk of massive earthquake in Japan within 30 years. These earthquakes could produce large-scale tsunamis. Tsunamis are very powerful and can be traveled thousands of miles and caused damage in many countries. Consideration of the effect of tsunami to the moored ship is very important because it brings the loss of life and vast property damage. In this paper, the numerical simulation procedure to analyze the motions of a moored ship due to the observed waves of tsunami, Tokachi-off earthquake tsunami profile in northern Pacific coasts of Japan on September 26 in 2003. And the effects on the motions and mooring loads are investigated by numerical simulation. Numerical simulations consist of hydrodynamic analyses in a frequency domain and ship motion analyses in a time domain as the motions of moored ships are examined. As the process begins, the hydrodynamic and waveexciting forces for moored ships must be calculated. Ship motions and mooring forces can then be calculated by solving the equations of motion. In order to investigate the safety evaluation on the motions of moored ship by tsunami attack, we applied a numerical simulation procedure to a 135,000m3 LNG carrier moored at an offshore sea berth.

  • PDF

Development of the Global Tsunami Prediction System using the Finite Fault Model and the Cyclic Boundary Condition (유한 단층 모델 및 순환 경계조건을 이용한 전지구 지진해일 예측 시스템 개발)

  • Lee, Jun-Whan;Park, Eun Hee;Park, Sun-Cheon;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.391-405
    • /
    • 2015
  • A global tsunami prediction system was suggested for a distant tsunami using a finite fault model and a cyclic boundary condition. The possibility of the suggested system as a distant tsunami response system was checked by applying it into the case of 2014 Chile tsunami. A comparison between the numerical results(tsunami height and arrival time) with different conditions (boundary condition, governing equation, grid size and fault model) and measured data (DART buoy, tide station) showed the importance of the finite fault model and the cyclic boundary condition.

A Study on the Impacts of the 1741 Tsunami Recorded in the Annals of Joseon Dynasty (조선왕조실록에 기록된 1741년 쓰나미 영향 연구)

  • Byun, Sang-Shin;Kim, Kyeong Ok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2021
  • The Annals of Joseon Dynasity record a significant damage of tsunami in the east coast of Gangwon Province on August 29, 1741. The tsunami occurred near Oshima-Oshima island off the southwestern coast of Hokkaido, Japan, and this study conducted simulations of a ray-tracing model to analyze the effects of the tsunami on the East coast of Korean Peninsula at that time. Model results were calculated using four different depth dataset (ETOPO2m, ETOPO1m, SKKU1m, and GEBCO15c), and results using the highest resolution GEBCO15c showed the best description of the damage recorded in the Annals of the Joseon Dynasty. Based on such, the travel time and paths of the tsunami that reached the main regions of Gangwon Province are presented in detail.

Prediction of Coastal Inundation due to Tsunamis : Pohang New Port (지진해일에 의한 해수범람 예측 : 포항신항)

  • Sim, Ju-Yeol;Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.135-143
    • /
    • 2008
  • During the last decades several devastating tsunamis have been occurred. Recently, there have been increasingly concerned about tsunamis around the Korean Peninsula since the 2004 Sumatra Tsunami occurred on December 26, 2004. In general, the Korean Peninsula is not safe against potential tsunami attacks. The 1983 Central East Sea Tsunami and the 1993 Hokkaido Tsunami caused considerable damage to the Eastern Part of the Peninsula. Thus, a prediction of damage due to tsunamis must be required at the Eastern Part of the Peninsula. In this study, numerical simulation of tsunamis at Pohang New Port, one of the most important ports in the Eastern Part of Korea, is conducted for three different tsunami events. Numerical simulation is focused on inundation on the port and run-down around an intake structure which supplies cooling water to the porthinterland. The computed results show that Pohang New Port is damaged by the most dangerous tsunami which can be generated in the East Sea. Thus, it is required to set up a counter-measure against tsunami attacks at Pohang New Port.

Construction of Logic Trees and Hazard Curves for Probabilistic Tsunami Hazard Analysis (확률론적 지진해일 재해도평가를 위한 로직트리 작성 및 재해곡선 산출 방법)

  • Jho, Myeong Hwan;Kim, Gun Hyeong;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.62-72
    • /
    • 2019
  • Due to the difficulties in forecasting the intensity and the source location of tsunami the countermeasures prepared based on the deterministic approach fail to work properly. Thus, there is an increasing demand of the tsunami hazard analyses that consider the uncertainties of tsunami behavior in probabilistic approach. In this paper a fundamental study is conducted to perform the probabilistic tsunami hazard analysis (PTHA) for the tsunamis that caused the disaster to the east coast of Korea. A logic tree approach is employed to consider the uncertainties of the initial free surface displacement and the tsunami height distribution along the coast. The branches of the logic tree are constructed by reflecting characteristics of tsunamis that have attacked the east coast of Korea. The computational time is nonlinearly increasing if the number of branches increases in the process of extracting the fractile curves. Thus, an improved method valid even for the case of a huge number of branches is proposed to save the computational time. The performance of the discrete weight distribution method proposed first in this study is compared with those of the conventional sorting method and the Monte Carlo method. The present method is comparable to the conventional methods in its accuracy, and is efficient in the sense of computational time when compared with the conventional sorting method. The Monte Carlo method, however, is more efficient than the other two methods if the number of branches and the number of fault segments increase significantly.

Numerical Simulation on Control of Tsunami by Resonator (I) (for Imwon and Mukho ports) (공진장치에 의한 지진해일파의 제어에 관한 수치시뮬레이션(I) (임원항과 묵호항에 대해))

  • Lee, Kwang-Ho;Jeon, Jong-Hyeok;Kim, Do-Sam;Lee, Yun-Du
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.481-495
    • /
    • 2020
  • After the resonator on the basis of the wave-filter theory was designed to control the waves with a specific frequency range surging into the harbor, the several case with the use of resonator have been reported in some part of sea, including the port of Long Beach, USA, and yacht harbor at Rome, Italy in order to control the long-period wave motion from the vessels. Recently, the utility and applicability of the resonator has been sufficiently verified in respect of the control of tsunami approximated as the solitary wave and/or the super long-period waves. However, the case with the application of tsunami in the real sea have not been reported yet. In this research, the respective case with the use of existing resonator at the port of Mukho and Imwon located in the eastern coast of South Korea were studied by using the numerical analysis through the COMCOT model adapting the reduction rate of 1983 Central East Sea tsunami and 1993 Hokkaido Southwest off tsunami. Consequently, the effectiveness of resonator against tsunami in the real sea was confirmed through the reduction rate of maximum 40~50% at the port of Mukho, and maximum 21% at the port of Imwom, respectively. In addition, it was concluded that it is necessary to study about the various case with application of different shape, arrangement, and size of resonator in order to design the optimal resonator considering the site condition.

Numerical Simulation on Control of Tsunami by Resonator (II) (for Samcheok port) (공진장치에 의한 지진해일파의 제어에 관한 수치시뮬레이션(II) (삼척항에 대해))

  • Lee, Kwang-Ho;Jeon, Jong-Hyeok;Kim, Do-Sam;Lee, Yun-Du
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.496-505
    • /
    • 2020
  • In the previous research, the effectiveness of resonator was confirmed through the numerical analysis on two cases with the use of existing resonator at the Mukho and Imwon ports located in the eastern coast of South Korea by discussing the reduction rates of 1983 Central East Sea tsunami, and 1993 Hokkaido Southwest off tsunami, respectively. In this study, the reduction rates of tsunami height with three different resonators, Type I, II-1, and II-2, at the Samcheok port were examined respectively through the numerical analysis using COMCOT model under the same condition as the previous study. It was discussed the spatial distribution of maximum height of tsunami, change of water level, and effectiveness of resonator with the presence of new types of resonator, and change of their sizes. As a result, the effectiveness of resonator was verified through the application of new types of resonator reducing about maximum 40% of tsunami height. In order to design the optimal resonator for the variety of site condition, it is necessary to research about the various cases applying different shape, arrangement, and size of resonator as further study.