DOI QR코드

DOI QR Code

Development of the Global Tsunami Prediction System using the Finite Fault Model and the Cyclic Boundary Condition

유한 단층 모델 및 순환 경계조건을 이용한 전지구 지진해일 예측 시스템 개발

  • Lee, Jun-Whan (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Park, Eun Hee (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Park, Sun-Cheon (Global Environment System Research Division, National Institute of Meteorological Sciences) ;
  • Woo, Seung-Buhm (Department of Ocean Science, College of Natural Science Inha University)
  • 이준환 (국립기상과학원 지구환경시스템연구과) ;
  • 박은희 (국립기상과학원 지구환경시스템연구과) ;
  • 박순천 (국립기상과학원 지구환경시스템연구과) ;
  • 우승범 (인하대학교 해양과학과)
  • Received : 2015.09.23
  • Accepted : 2015.10.24
  • Published : 2015.12.31

Abstract

A global tsunami prediction system was suggested for a distant tsunami using a finite fault model and a cyclic boundary condition. The possibility of the suggested system as a distant tsunami response system was checked by applying it into the case of 2014 Chile tsunami. A comparison between the numerical results(tsunami height and arrival time) with different conditions (boundary condition, governing equation, grid size and fault model) and measured data (DART buoy, tide station) showed the importance of the finite fault model and the cyclic boundary condition.

본 연구에서는 원거리 지진해일에 대응하기 위한 기초 연구로써 유한 단층 모델과 순환 경계조건을 이용한 전지구 지진해일 예측 시스템을 제안하였다. 제안한 전지구 지진해일 예측 시스템을 2014년 칠레 지진해일에 적용하여 원거리 지진해일에 대한 대응 시스템으로써의 가능성을 검토하였다. 전지구 지진해일 예측 시스템의 경계조건, 지배방정식, 격자 크기, 단층 모델에 따른 지진해일 파고와 도달시각을 DART 부이, 조위관측소 관측 자료와 비교함으로써 유한 단층 모델과 순환 경계조건의 중요성을 확인하였다.

Keywords

References

  1. An, C., Seplveda, I. and Liu, P.L.F. (2014). Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Research Letters, 41(11), 3988-3994. https://doi.org/10.1002/2014GL060567
  2. Bae, J.S., Cho, Y.J., Kwon, S.J. and Yoon, S.B. (2012). Numerical analyses of 2011 East Japan Tsunami propagation towards Korean peninsula. Journal of Korean Society of Coastal and Ocean Engineers. 24(1), 66-76 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.1.066
  3. Bae, J.S. and Yoon, S.B. (2010). Construction of tsunami inundation map for real-time quantitative response. Journal of Korean Society of Coastal and Ocean Engineers. 22(5), 287-294 (in Korean).
  4. Chen, C., Lai, Z., Beardsley, R.C., Sasaki, J., Lin, J., Lin, H., Ji, R. and Sun, Y. (2014). The March 11, 2011 Thoku M9.0 earthquake-induced tsunami and coastal inundation along the Japanese coast: A model assessment. Progress in Oceanography, 123, 84-104. https://doi.org/10.1016/j.pocean.2014.01.002
  5. Cho, Y.-S. (1995). Numerical simulations of tsunami propagation and run-up. Ph.D. dissertation, Cornell University, USA.
  6. Cho, Y.-S. and Ha, T. (2010). Characteristics of tsunamis and mitigation planning. Journal of Korean Society of Earth and Exploration Geophysicists. 13(3), 295-300 (in Korean).
  7. Cho, Y.-S., Sohn, D.H. and Lee, S.O. (2007). Practical modified scheme of linear shallow-water equations for distant propagation of tsunamis. Ocean Engineering, 34(11), 1769-1777. https://doi.org/10.1016/j.oceaneng.2006.08.014
  8. Cho, Y.-S. and Suh, S.-W. (2001). Estimation of maximum inundation zone due to tsunamis with moving boundary. Journal of Korean Society of Coastal and Ocean Engineers. 13(2), 100-108 (in Korean).
  9. Cushman-Roisin, B. and Beckers, J.-M. (2011). Introduction to geophysical fluid dynamics: physical and numerical aspects. Academic Press, 101.
  10. Dao, M.H. and Tkalich, P. (2007). Tsunami propagation modelling - a sensitivity study. Natural Hazards and Earth System Science, 7(6), 741-754. https://doi.org/10.5194/nhess-7-741-2007
  11. Dutykh, D. and Dias, F. (2009). Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting. Mathematics and Computers in Simulation, 80(4), 837-848. https://doi.org/10.1016/j.matcom.2009.08.036
  12. Fritz, H.M., Petroff, C.M., Cataln, P.A., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S.E., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopoulos, A., Contreras, M., Almar, R., Dominguez, J.C. and Synolakis, C.E. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics, 168(11), 1989-2010. https://doi.org/10.1007/s00024-011-0283-5
  13. Glimsdal, S., Pedersen, G.K., Harbitz, C.B. and Lovholt, F. (2013). Dispersion of tsunamis: does it really matter. Natural Hazards and Earth System Sciences, 13, 1507-1526. https://doi.org/10.5194/nhess-13-1507-2013
  14. Gusman, A.R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., and Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophysical Research Letters, 42(4), 1053-1060. https://doi.org/10.1002/2014GL062604
  15. Ha, T. and Cho, Y.-S. (2015). Tsunami propagation over varying water depths. Ocean Engineering. 101, 67-77. https://doi.org/10.1016/j.oceaneng.2015.04.006
  16. Ha, T.-M., Cho, Y.-S., Choi, B.-H. and Kim, S.-M. (2007). Field survey of 2004 Sumatra-Andaman Tsunami: Andaman and Nicobar Islands. Journal of Korean Society of Coastal and Ocean Engineers. 19(1), 97-103 (in Korean).
  17. Hayes, G.P., Herman, M.W., Barnhart, W.D., Furlong, K.P., Riquelme, S., Benz, H.M., Bergman, E., Barrientos, S., Earle, P.S. and Samsonov, S. (2014). Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 512(7514), 295-298. https://doi.org/10.1038/nature13677
  18. Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A.R., and Watada, S. (2014). Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 Mw 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics, 172(3-4), 719-730.
  19. Imai, K., Satake, K. and Furumura, T. (2010). Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough. Earth, Planets and Space, 62(4), 427-432. https://doi.org/10.5047/eps.2009.12.005
  20. Imamura, F., Shuto, N. and Goto, C. (1988). Numerical simulations of the transoceanic propagation of tsunamis. Proceeding of 6th Congress Asian and Pacific Regional Division, IAHR, Japan, 265-272.
  21. Jeffreys, H. and Bullen, K.E. (1958). Seismological tables. Office of the British Association.
  22. Kamigaichi, O. (2009). Tsunami forecasting and warning. In Encyclopedia of Complexity and Systems Science, Springer New York, 9592-9618.
  23. Kikuchi, M. and Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2), 491-506.
  24. Kikuchi, M. and Kanamori, H. (1986). Inversion of complex body waves-II. Physics of the Earth and Planetary Interiors, 43(3), 205-222. https://doi.org/10.1016/0031-9201(86)90048-8
  25. Kikuchi, M. and Kanamori, H. (1991). Inversion of complex body waves-III. Bulletin of the Seismological Society of America, 81(6), 2335-2350.
  26. Kim, D.-S., Kim, J.-M. and Lee, K.-H. (2007a). Numerical simulation of tsunamis that affected the coastal zone of East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 21(6), 72-80 (in Korean).
  27. Kim, D.-S., Kim, J.-M., Lee, K.-H. and Son, B.-K. (2007b). Analysis of the effects on the southeastern coast of Korea by a tsunami originating from hypothetical earthquake in Japan. Journal of Korean Society of Coastal and Ocean Engineers, 21(6), 64-71 (in Korean).
  28. Kim, J.H., Choi, W.H., Bae, J.S. and Yoon, S.B. (2008). Propagation characteristics of potential tsunamis in Okinawa trough. Journal of Korean Society of Coastal and Ocean Engineers, 20(3), 268-276 (in Korean).
  29. Kirby, J.T., Shi, F., Tehranirad, B., Harris, J.C. and Grilli, S.T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62, 39-55. https://doi.org/10.1016/j.ocemod.2012.11.009
  30. Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., Fujii, Y., Miyake, H., Sakai, S., Yamanaka, Y. and Okada, T. (2011). A unified source model for the 2011 Tohoku earthquake. Earth and Planetary Science Letters, 310, 480-487. https://doi.org/10.1016/j.epsl.2011.09.009
  31. Kowalik, Z., Knight, W., Logan, T. and Whitmore, P. (2005). Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004. Science of Tsunami Hazards, 23(1), 40-56.
  32. Kowalik, Z., Knight, W., Logan, T. and Whitmore, P. (2007). The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure and Applied Geophysics, 164, 1-15. https://doi.org/10.1007/s00024-006-0157-4
  33. Lee, D.K., Ryoo, Y., Yang, J., Kim, S., Youn, Y., Lee, J.H. and Park, J. (2005). A way for establishing tsunami scenario data base. Journal of Korean Society of Earth and Exploration Geophysicists, 8(2), 93-96 (in Korean).
  34. Lee, K.H., Kim, M.J., Kawasaki, K., Cho, S. and Kim D.S. (2012). Effects on the Jeju Island of tsunamis caused by triple interlocked Tokai, Tonankai, Nankai Earthquakes in Pacific Coast of Japan. Journal of Korean Society of Coastal and Ocean Engineers, 24(4), 295-304 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.4.295
  35. Lima, V.V., Miranda, J.M., Baptista, M.A., Catalao, J., Gonzalez Rodriguez, E.M., Otero, L., Olabarrieta, J.A. and Carreo Herrero, E. (2010). Impact of a 1755-like tsunami in Huelva, Spain. Natural Hazards and Earth System Science, 10(1), 139-148. https://doi.org/10.5194/nhess-10-139-2010
  36. Lin, S.C., Wu, T.R., Yen, E., Chen, H.Y., Hsu, J., Tsai, Y.L., Lee, C.-J. and Liu, P.L.F. (2015). Development of a tsunami early warning system for the South China Sea. Ocean Engineering, 100, 1-18. https://doi.org/10.1016/j.oceaneng.2015.02.003
  37. Liu, P.L., Woo, S.B. and Cho, Y.S. (1998). Computer programs for tsunami propagation and inundation. Cornell University.
  38. Lovholt, F., Pedersen, G. and Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research: Oceans (1978-2012), 113(C9), doi:10.1029/2007JC004603.
  39. Megawati, K., Shaw, F., Sieh, K., Huang, Z., Wu, T.R., Lin, Y., Tan, S.K. and Pan, T.-C. (2009). Tsunami hazard from the subduction megathrust of the South China Sea: Part I. source characterization and the resulting tsunami. Journal of Asian Earth Sciences, 36(1), 13-20. https://doi.org/10.1016/j.jseaes.2008.11.012
  40. Meinig, C., Stalin, S.E., Nakamura, A.I. and Milburn, H.B. (2005). Real-time deep-ocean tsunami measuring, monitoring, and reporting system: The NOAA DART II description and disclosure. NOAA Pacific Marine Environmental Laboratory (PMEL), Tech. Rep.
  41. Melgar, D. and Bock, Y. (2015). Kinematic Earthquake Source Inversion and Tsunami Runup Prediction with Regional Geophysical Data. Journal of Geophysical Research: Solid Earth, 120(5), 3324-3349. https://doi.org/10.1002/2014JB011832
  42. Miyoshi, T., Saito, T., Inazu, D. and Tanaka, S. (2015). Tsunami modeling from the seismic CMT solution considering the dispersive effect: a case of the 2013 Santa Cruz Islands tsunami. Earth, Planets and Space, 67(1), 1-7. https://doi.org/10.1186/s40623-014-0143-5
  43. Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and runup. Geophysical Research Letters, 38, L00G14, doi:10.1029/2011GL049210.
  44. Murotani, S., Iwai, M., Satake, K., Shevchenko, G. and Loskutov, A. (2014). Tsunami forerunner of the 2011 Tohoku Earthquake observed in the Sea of Japan. Pure and Applied Geophysics, 1-15.
  45. National Oceanic and Atmospheric Administration (2005) Deep-Ocean Assessment and Reporting of Tsunamis (DART(R)). National Geophysical Data Center, NOAA. doi:10.7289/V5F18WNS.
  46. Ohmachi, T., Tsukiyama, H. and Matsumoto, H. (2001). Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting. Bulletin of the Seismological Society of America, 91(6), 1898-1909. https://doi.org/10.1785/0120000074
  47. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135-1154.
  48. Park, K.-W. and Cho, Y.-S. (2012). Hazard map with probable maximum tsunamis. Journal of Korean Society of Hazard Mitigation, 12(2), 263-270 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.2.263
  49. Park, S.-C. and Lee, J.-W. (2014). Fundamental research for improvement of tsunami warning system of KMA. Proceedings of Earthquake Engineering Society of Korea Conference 2014, 85-86 (in Korean).
  50. Pawlowicz, R., Beardsley, B. and Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929-937. https://doi.org/10.1016/S0098-3004(02)00013-4
  51. Purser, R.J. (1988). Accurate numerical differencing near a polar singularity of a skipped grid. Monthly weather review, 116(5), 1067-1076. https://doi.org/10.1175/1520-0493(1988)116<1067:ANDNAP>2.0.CO;2
  52. Saito, T. and Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877-888. https://doi.org/10.1111/j.1365-246X.2009.04206.x
  53. Shevchenko, G., Ivelskaya, T. and Loskutov, A. (2014). Characteristics of the 2011 Great Tohoku tsunami on the Russian Far East coast: Deep-water and coastal observations. Pure and Applied Geophysics, 171(12), 3329-3350. https://doi.org/10.1007/s00024-013-0727-1
  54. Shuto, N., Suzuki, T. and Hasegawa, K. (1986). A study of numerical techniques on the tsunami propagation and run-up. Science of Tsunami Hazard, 4, 111-124.
  55. Sim, J.-Y., Ha, T.-M. and Cho, Y.-S. (2009). Relationship between maximum wave heights of tsunamis and earthquake parameters. Journal of Korean Society of Hazard Mitigation, 9(3), 135-142 (in Korean).
  56. Suppasri, A., Imamura, F. and Koshimura, S. (2010). Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coastal Engineering Journal, 52(2), 107-132. https://doi.org/10.1142/S0578563410002142
  57. Tatehata, H. (1998). The new tsunami warning system of the Japan Meteorological Agency. Science of Tsunami Hazards, 16(1), 39-49.
  58. Titov, V., Gonzalez, F., Bernard, E., Eble, M., Mofjeld, H., Newman, J. and Venturato, A. (2005). Real-Time Tsunami Forecasting:Challenges and Solutions. Natural Hazards, 35(1), 35-41. https://doi.org/10.1007/s11069-004-2403-3
  59. Tsushima, H., Hino, R., Tanioka, Y., Imamura, F. and Fujimoto, H. (2012). Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting. Journal of Geophysical Research: Solid Earth (1978-2012), 117(B03311), doi:10.1029/2011JB008877.
  60. Wang, X. (2008). Numerical modelling of surface and internal waves over shallow and intermediate water. Ph.D. dissertation, Cornell University, USA.
  61. Wang, X. and Liu, P.L.F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147-154. https://doi.org/10.1080/00221686.2006.9521671
  62. Watada, S., Kusumoto, S. and Satake, K. (2014). Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research:Solid Earth, 119(5), 4287-4310. https://doi.org/10.1002/2013JB010841
  63. Wijetunge, J.J. (2012). Nearshore tsunami amplitudes off Sri Lanka due to probable worst-case seismic scenarios in the Indian Ocean. Coastal Engineering, 64, 47-56. https://doi.org/10.1016/j.coastaleng.2012.02.005
  64. Wijetunge, J.J., Wang, X. and Liu, P.L.F. (2008). Indian Ocean Tsunami on 26 December 2004: numerical modeling of inundation in three cities on the south coast of Sri Lanka. Journal of Earthquake and Tsunami, 2(2), 133-155. https://doi.org/10.1142/S1793431108000293
  65. Yamazaki, Y. and Cheung, K.F. (2011). Shelf resonance and impact of nearfield tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38(12), L12605. https://doi.org/10.1029/2011GL047508
  66. Yokota, Y., Koketsu, K., Fujii, Y., Satake, K., Sakai, S., Shinohara, M. and Kanazawa, T. (2011). Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophysical Research Letters, 38, L00G21, doi:10.1029/2011GL050098.
  67. Yoon, S.B. (2002). Propagation of distant tsunamis over slowly varying topography. Journal of Geophysical Research: Oceans (1978-2012), 107(C10), 1-11.
  68. Yoon, S.B., Baek, U., Park, W.K. and Bae, J.S. (2012). Practical forecast-warning system for distant tsunamis. Journal of Korea Water Resources Association. 45(10), 997-1008 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.10.997
  69. Yoon, S.B., Lim, C.H. and Choi, J. (2007). Dispersion-correction finite difference model for simulation of transoceanic tsunamis. Terrestrial Atmospheric and Oceanic Sciences, 18(1), 31-53. https://doi.org/10.3319/TAO.2007.18.1.31(T)

Cited by

  1. Numerical Simulations of the 2011 Tohoku, Japan Tsunami Forerunner Observed in Korea using the Bathymetry Effect vol.28, pp.5, 2016, https://doi.org/10.9765/KSCOE.2016.28.5.265
  2. Propagation of Tsunamis Generated by Seabed Motion with Time-History and Spatial-Distribution: An Analytical Approach vol.30, pp.6, 2018, https://doi.org/10.9765/KSCOE.2018.30.6.263