DOI QR코드

DOI QR Code

Numerical Study on Propagation Characteristics of Tsunami Induced by Tokai, Tonankai and Nankai Massive Earthquakes

토카이, 토난카이 및 난카이 대규모 지진으로 인한 지진해일의 전파특성에 관한 수치적 연구

  • Kawasaki, Koji (Dept. of Civil Eng., Nagoya University) ;
  • Suzuki, Kazuki (Dept. of Civil Eng., Nagoya University) ;
  • Lee, Kwang-Ho (Dept. of Energy Resources and Plant Eng., Kwandong University) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean University)
  • Received : 2013.12.10
  • Accepted : 2013.12.23
  • Published : 2013.12.31

Abstract

After the 2011 Tohoku Earthquake, it has been pointed out that Tokai, Tonankai and Nankai massive earthquakes with a magnitude of 9.0 could strike the Pacific coasts in western Japan. This study aims at investigating numerically propagation characteristics of tsunami generated by a 9.0 magnitude Tokai, Tonankai and Nankai massive earthquakes on the Pacific coasts and three major bays in Japan, Tokyo Bay, Ise Bay and Osaka Bay. It was revealed from the numerical results that the tsunami heights on the Pacific coasts for M9.0 earthquake were about twice as much as those for M8.7 earthquake and the first tsunami arrival time was faster at some areas distant from the tsunami source. Moreover, high water level in the bays was recognized to continue for a long time because of the enclosed bays.

2011년 일본동북지방 대지진 이후, 규모 9.0의 토카이, 토난카이 및 난카이 대규모 지진이 일본 서부의 태평양 해안을 내습할 수 있다는 주장이 제기되고 있다. 본 연구에서는 태평양 해안과 일본의 주요 3대 만인 도쿄만과 이세만 그리고 오사카만에서 규모 9.0의 토카이, 토난카이 및 난카이 대규모 지진에 의해 발생하는 지진해일의 전파 특성을 수치적으로 검토하였다. 본 연구에서 수행된 수치해석결과 M9.0의 지진에 의해 발생하는 태평양 해안에서의 지진해일 높이는 M8.7의 지진에 비해 그 크기가 약 2배에 달하며 지진원으로부터 떨어진 일부 지역에서는 빠른 지진해일의 도달시간을 확인하였다. 또한, 페쇄된 만의 영향에 의해 오랜 시간 동안 만내에서 고수위가 지속됨을 알 수 있었다.

Keywords

References

  1. Central Disaster Prevention Council (2003). Report about the Tonankai-Nankai earthquake (draft). http://www.bousai.go.jp/jishin/chubou/nankai/16/siryou2.pdf. (in Japanese)
  2. Furumura, T., Imai, K. and Maeda, T. (2011). A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu, Japan. J. Geophys. Res., 116, 2156-2202.
  3. Goto, C., Ogawa, Y., Shuto, N. and Imamura, F. (1997). Numerical Method of Tsunami Simulation with the Leap-Frog Scheme (IUGG/IOC Time Project). IOC Manuals and Guides 35, 130, UNESCO.
  4. Imai, K., Satake, K. and Furumura, T. (2010). Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough. Earth Planets Space, 62(4), 427-432. https://doi.org/10.5047/eps.2009.12.005
  5. Lee, K.H., Kim, M. J., Kawasaki, K., Cho, S. and Kim, D.S. (2012). Effects on the Jeju Island of Tsunamis Caused by Triple Interlocked Tokai, Tonankai, Nankai Earthquakes in Pacific Coast of Japan. Journal of Korean Society of Coastal and Ocean Engineers. 24(4), 295-304 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.4.295
  6. Mori, N., Takahashi, T. and The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2012) Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coast. Eng. J., 54(1), 1250001. https://doi.org/10.1142/S0578563412500015
  7. US Geological Survey (2012). largest earthquakes in the world since 1900. USGS earthquake hazards program, http://neic.usgs.gov/neis/eqlists/1Omaps-world.html.