• Title/Summary/Keyword: trypsin purification

Search Result 67, Processing Time 0.024 seconds

Solid-phase PEGylation for Site-Specific Modification of Recombinant Interferon ${\alpha}$-2a : Process Performance, Characterization, and In-vitro Bioactivity (재조합 인터페론 알파-2a의 부위 특이적 수식을 위한 고체상 PEGylation : 공정 성능, 특성화 및 생물학적 활성)

  • Lee, Byung-Kook;Kwon, Jin-Sook;Lee, E.K.
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • In 'solid-phase' PEGylation, the conjugation reaction occurs as the proteins are attached to a solid matrix, and thus it can have distinct advantages over the conventional, solution-phase process. We report a case study: rhIFN-${\alpha}$-2a was first adsorbed to cation exchange resin and then N-terminally PEGylated by aldehyde mPEG of 5, 10, and 20 kD through reductive alkylation. After the PEGylation, salt gradient elution efficiently recovered the mono-PEGylate in a purified form from the unwanted species such as unmodified IFN, unreacted PEG, and others. The mono-PEGylation and its purification were integrated in a single chromatographic step. Depending on the molecular weight of the mPEG aldehyde used, the mono-PEGylation yield ranged 50-64%. We could overcome the major problems of random, or uncontrollable, multi-PEGylation and the post-PEGylation purification difficulties associated with the solution-phase process. N-terminal sequencing and MALDI-TOF MS confirmed that a PEG molecule was conjugated only to the N-terminus. Compared with the unmodified IFN, the mono-PEGylate showed the reduced anti-viral activity as measured by the cell proliferation assay. The bioactivity was reduced more as the higher molecular weight PEG was conjugated. Immunoreactivity, evaluated indirectly by antibody binding activity using a surface plasmon resonance biosensor, also decreased. Nevertheless, trypsin resistance as well as thermal stability was considerably improved.

Biosynthesis of recombinant human prominiinsulin in E. coli and plant systems (대장균과 식물시스템에서 재조합 인간 prominiinsulin 생합성 분석)

  • Choi, Yu Jin;Park, Su Hyun;Kim, Ji Su;Wi, Soo Jin;Park, Ky Young
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.169-177
    • /
    • 2013
  • Recently, the number of people with diabetes is rapidly increasing, coupled with the fact that the insulin market is remarkably increasing. Therefore, molecular farming for plant-derived pharmaceutical protein production is reported as becoming more attractive than ever. In this study, we carried out experiments step by step for development of recombinant insulin constructs, which were transformed into E. coli system, in vitro transcription and translation system, and tobacco cells. At first, recombinant proinsulin protein was successfully produced in in vitro transcription and translation system with wheat germ extract. After which, recombinant construct of prominiinsulin encoded a fusion protein of 7.8 kDa with trypsin cleavage sites at N terminus and C terminus of minimized C-peptide was tried to in vitro expression using E.coli culture. After purification with His-tag column, the resulting recombinant prominiinsulin protein was processed with trypsin, and then checked insulin biosynthesis by SDS-PAGE and western blot analysis with anti-insulin monoclonal antibody. The immunoreactive product of trypsin-treated miniinsulin was identical to the predicted insulin hexamer. The construct of 35S promoter-driven preprominiinsulin recombinant gene with signal peptide region for ER-targeting and red fluorescence protein gene [N terminus ${\rightarrow}$ tobacco E2 signal peptide ${\rightarrow}$ B-peptide (1-29 AA) ${\rightarrow}$ AAK ${\rightarrow}$ A-peptide (1-21 AA) ${\rightarrow}$ RR ${\rightarrow}$ His6 ${\rightarrow}$ KDEL ${\rightarrow}$ C terminus] was transformed into BY-2 tobacco cells. A polypeptide corresponding to the 38-kDa molecular mass predicted for fusion protein was detected in total protein profiles from transgenic BY-2 cells by western analysis. Therefore, this recombinant preprominiinsulin construct can be used for generation of transgenic tobacco plants producing therapeutic recombinant insulin.

Development of ELISA for Brucella abortus RB51 II. Purification of 8kDa antigen and development of ELISA using its antigen of Brucella abortus RB51 (부루세라 RB51의 ELISA 진단법 개발 II. Brucella abortus RB51균의 8kDa 항원 정제 및 ELISA 진단법 개발)

  • Her, Moon;Cho, Dong-hee;Jung, Byeong-yeal;Cho, Seong-kun;Jung, Suk-chan;Kim, Ok-kyung
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • A procedure for extraction and purification of 8 kDa antigen of Brucella abortus RB51 was developed. Bacteria heat inactivated at $60^{\circ}C$, 30 min was extracted by 1% sarcosine and followed by fluid pressure liquid gel filtration chromatography of 2 series, Superose 12 HR 10/30 and Sephacryl S-100. There was produced $71.46{\mu}g/g$(wet) of 8 kDa antigen, and it resisted 1% trypsin, solved 1% triton X-100 higher than distilled water and inactivated 0.1% proteinase K. These results show that 8 kDa antigen may be a lipoprotein existed cell surface of B. abortus RB51. Also, we developed ELISA using purified 8 kDa surface antigen of Brucella abortus RB51 strain, its specificity and sensitivity was 95.0%, 98.6%, respectively. As compared with dot-blot assay using whole cell and ELISA using 8 kDa antigen, its correlation was 93.5%.

  • PDF

Purification and Characterization of a Serine Protease (CPM-2) with Fibrinolytic Activity from the Dung Beetles

  • Ahn, Mi-Young;Hahn, Bum-Soo;Ryu, Kang-Sun;Hwang, Jae-Sam;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.816-822
    • /
    • 2005
  • Catharsius protease-2 (CPM-2) was isolated from the body of dung beetles, Catharsius molossus, using a three step purification process (ammonium sulfate fractionation, gel filtration on Bio-Gel P-60, and affinity chromatography on DEAE Affi-Gel blue). The purified CPM-2, having a molecular weight of 24 kDa, was assessed homogeneously by SDS-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of CPM-2 was composed of X Val Gin Asp Phe Val Glu Glu lie Leu. CPM-2 was inactivated by $Cu^{2+}\;and\;Zn^{2+}$ and strongly inhibited by typical serine proteinase inhibitors such as TLCK, soybean trypsin inhibitor, aprotinin, benzamidine, and ${\alpha}_1$-antitrypsin. However, EDTA, EGTA, cysteine, $\beta$-mercaptoethanol, E64, and elastatinal had little effect on enzyme activity. In addition, antiplasmin and antithrombin III were not sensitive to CPM-2. Based on the results of a fibrinolytic activity test, CPM-2 readily cleaved $A{\alpha}-$ and $B{\beta}$-chains of fibrinogen and fibrin, and y-chain of fibrinogen more slowly. The nonspecific action of the enzyme resulted in extensive hydrolysis, releasing a variety of fibrinopeptides of fibrinogen and fibrin. Polyclonal antibodies of CPM-2 were reactive to the native form of antigen. The ELISA was applied to detect quantities, in nanograms, of the antigen in CPM-2 protein.

Purification and Characterization of Lacticin NK34 Produced by Lactococcus lactis NK34 against Bovine Mastitis (Lactococcus lactis NK34에 의해 생산된 소 유방염 원인균에 효과가 있는 lacticin NK34의 정제 및 특성)

  • Lee, Na-Kyoung;Park, Yeo-Lang;Kim, Hyoun-Wook;Park, Yong-Ho;Rhim, Seong-Lyul;Kim, Jong-Man;Kim, Jae-Myung;Nam, Hyang-Mi;Jung, Suk-Chan;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.457-462
    • /
    • 2008
  • Lactococcus lactis NK34, isolated from jeotgal (Korean traditional fermented fish), produces bacteriocin against bovine mastitis pathogens such as Staphylococcus aureus 7, S. aureus 8, Staphylococcus chromogenes 10, S. chromogenes 19, Staphylococcus hominis 9, Streptococcus uberis E290, Enterococcus faecium E372, Streptococcus agalactiae ATCC 13813, Pseudonocardia autotrophia KCTC 9455, and Staphylococcus simulans 78. Lacticin NK34 was inactivated by protease XIV but not by protease IX, protease XIII, proteinase K, $\acute{a}$-chymotrypsin, trypsin, and pepsin. Also, lacticin NK34 was stable over a pH range of 2 to 9 for 4 hr and withstood exposure to temperatures of 30-$100^{\circ}C$ for 30 min. Lacticin NK34 showed bactericidal effects against S. simulans 78. This bacteriocin was purified using ammonium sulfate precipitation, ion exchange chromatography, ultrafiltration, and hydrophobic chromatography. Tricin-SDS-PAGE of purified bacteriocin gave the same molecular weight (3.5 kDa) as nisin. The gene encoding this bacteriocin was amplified by PCR using nisin gene-specific primers. It showed similar sequences to this nisin Z gene. These results indicate that lacticin NK34 is a nisin-like bacteriocin, and could be used as an antimicrobial alternative for livestock.

Screening and Purification of a Novel Antibacterial Peptide, cgCAFLP, Against Skin Pathogens from the Extract of the Pacific Oyster Crassostrea gigas from Buan in Korea (부안산 참굴(Crassostrea gigas) 추출물로부터 피부 상재균에 대한 새로운 항균 펩타이드, cgCAFLP의 탐색 및 정제)

  • Lee, Ji-Eun;Seo, Jung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.927-937
    • /
    • 2021
  • This study was performed to screen the antimicrobial activities of the extract from the Pacific oyster Crassostrea gigas against skin pathogens and to purify the relevant antibacterial peptide. The acidified extract showed potent antibacterial activities against gram-positive and gram-negative bacteria but showed no activity against Candida albicans and no significant cell toxicity. Among acne-causing pathogens, the acidified extract showed potent antibacterial activity only against Staphylococcus aureus, and its antibacterial activity was completely abolished by treatment with trypsin or chymotrypsin, and was inhibited by salt treatment. The acidified extract showed strong DNA-binding ability but did not show bacterial membrane permeabilizing ability. Based on antimicrobial activity screening and cytotoxic effects, a novel antibacterial peptide was purified from the acidified gill extract using solid-phase extraction, cation-exchange, and reversed-phase HPLC. The resulting peptide had a molecular weight of 4800.8 Da and showed partial sequence homology with the carbonic anhydrase 4 (CA4) protein in the hard-shelled mussel. Overall, we purified a novel antibacterial peptide, named cgCAFLP, which is related to carbonic anhydrase 4 (CA4) protein, against skin pathogens. Our results suggest that the Pacific oyster extract could be used as an additive to control some acne-related skin pathogens (S. aureus).

Characterization of a New Antidementia $\beta$-Secretase Inhibitory Peptide from Rubus coreanus

  • Lee, Dae-Hyoung;Lee, Dae-Hyung;Lee, Jong-Soo
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.489-494
    • /
    • 2008
  • In order to develop a potent antidementia $\beta$-secretase inhibitor from phytochemicals, $\beta$-secretase inhibitory activities of extracts from many medicinal plants and herbs were determined. Water extracts from Rubus coreanus showed the highest $\beta$-secretase inhibitory activity of 84.5%. After purification of the $\beta$-secretase inhibitor from R. coreanus using systematic solvent extraction, ultrafiltration, Sephadex G-10 column chromatography, and reverse-phase high performance liquid chromatography (HPLC), a purified $\beta$-secretase inhibitor with $IC_{50}$ inhibitory activity of $6.3{\times}10^3\;ng/mL$ ($1.56{\times}10^{-6}\;M)$ was obtained with a 0.08% solid yield. The molecular mass of the purified $\beta$-secretase inhibitor was estimated to be 576 Da by liquid chromatography-mass spectrometry (LC-MS) and $\beta$-secretase inhibitor also is a new tetrapeptide with the sequence Gly-Trp-Trp-Glu. The purified $\beta$-secretase inhibitory peptide inhibited $\beta$-secretase non-competitively and also show less inhibition on trypsin, however no inhibition on other proteases such as $\alpha$-secretase, chymotrypsin, and elastase.

Purification and Characterization of a Novel Extracellular Alkaline Phytase from Aeromonas sp.

  • SEO MYUNG-JI;KIM JEONG-NYEO;CHO EUN-AH;PARK HOON;CHOI HAK-JONG;PYUN YU-RYANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.745-748
    • /
    • 2005
  • A phytase from Aeromonas sp. LIK 1-5 was partially purified by ammonium sulfate precipitation and DEAE-Sephacel column chromatography. Its molecular weight was 44 kDa according to SDS-PAGE gel. Enzyme activity was optimal at pH 7 and at $50^{\circ}C$. The purified enzyme was strongly inhibited by 2 mM EDTA, $Zn^{2+},\;Co^{2+},\;or\;Mn^{2+}$, and activated by 2 mM $Ca^{2+}$. The K_m value for sodium phytate was 0.23 mM, and the enzyme was resistant to trypsin. The N-terminal amino acid sequence of the phytase was similar to that of other known alkaline phytases. The phytase was specific for ATP and sodium phytate, which is different from other known alkaline phytases. Based on the substrate specificity, the phytase may therefore be a novel alkaline phytase.

Characterization of a Collagenase-1 Inhibitory Peptide Purified from Skate Dipturus chilensis Skin (홍어류(Dipturus chilensis) 껍질로부터 분리 정제된 collagenase-1 저해 펩타이드의 특성)

  • Park, Sung-Ha;Lee, Jung-Kwon;Jeon, Joong-Kyun;Byun, Hee-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.456-463
    • /
    • 2011
  • We attempted to isolate a collagenase-1 inhibitory peptide from skate Dipturus chilensis skin protein. The protein from skate skin was digested by various enzymes (alcalase, ${\alpha}$-chymotrypsin, neutrase, papain, pepsin, and trypsin) to produce a collagenase-1 inhibitory peptide. The collagenase-1 inhibitory activity of the peptides obtained was measured by gelatin digestion assay. Among the six hydrolysates, pepsin hydrolysate exhibited the highest collagenase-1 inhibitory activity. The peptide showing strong collagenase-1 inhibitory activity was purified by Sephadex G-25 gel chromatography and HPLC using an octadecylsilyls (ODS) column. The amino acid sequence of purified collagenase-1 inhibitory peptide was identified to be Asn-Leu-Asp-Val -Leu-Glu-Val-Phe (961 Da) by quadrupole time of flight (Q-TOF) and electrospray ionization mass spectrometry (ESI-MS) mass spectroscopy. The $IC_{50}$ value of purified peptide was 87.0 ${\mu}M$. Moreover, the peptide did not exhibit cytotoxic effects on human dermal fibroblast cell lines.

Purification of Angiotensin I-Converting Enzyme Inhibitory Peptide from Squid Todarodes pacificus Skin (오징어(Todarodes pacificus) 껍질로부터 Angiotensin I 전환효소 저해 펩티드의 분리 정제)

  • Lee, Jung-Kwon;Jeon, Joong-Kyun;Byun, Hee-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.118-125
    • /
    • 2011
  • In this study, an angiotensin I-converting enzyme (ACE) inhibitor from squid skin was purified and characterized. Squid (Todarodes pacificus) skin protein isolates were hydrolyzed using six commercial proteases: alcalase, ${\alpha}$-chymotrypsin, neutrase, papain, pepsin, and trypsin. The peptic hydrolysate had the highest ACE inhibitory activity. The ACE inhibitory peptide was purified using Sephadex G-25 column chromatography and reverse phase high-performance liquid chromatography (HPLC) with a $C_{18}$ column. The purified ACE inhibitory peptide was identified and sequenced, and found to consist of seven amino acid residues: Ser-Ala-Gly-Ser-Leu-Val-Pro (657Da). The $IC_{50}$ value of the purified ACE inhibitory peptide was 766.2 ${\mu}M$, and Lineweaver-Burk plots suggested that the purified peptide acts as a noncompetitive ACE inhibitor. These results suggest that the ACE inhibitory peptide purified from the peptic hydrolysate of squid skin may be of benefit in developing antihypertensive drugs and functional foods.