• Title/Summary/Keyword: truncated enzymes

Search Result 17, Processing Time 0.022 seconds

A Microbial D-Hydantoinase is Stabilized and Overexpressed as a Catalytically Active Dimer by Truncation and Insertion of the C-Terminal Region

  • KIM, GEUN-JOONG;HAK-SUNG KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.242-248
    • /
    • 2002
  • Previously, it was reported that the nonhomologous C-terminal regions of the D-hydantoinases are nonessential for catalysis, but affect the oligomeric structure of the enzyme [3]. In an effort to further confirm the above observation, the C-terminal region-inserted enzyme was constructed by attaching a peptide (22 residues) at the C-terminal of the D-hydantoinase from Bacillus thermocatenulatus GH2, and its structural and biochemical properties were compared with both the wild-type and C-terminal region-truncated enzymes. As a result, native tetrameric D-hydantoinase was dimerized as the truncated enzyme, and the inserted mutant with a new sequence was expressed as a catalytically active form in E. coli. Expression level of the inserted and truncated enzymes were found to be significantly increased compared to the level of the wild-type enzyme, and this appears to be due to the reduced toxic effect of the mutant enzymes on host cells. Dimerized enzymes exhibited increased thermo- and pH stabilities considerably when compared with the corresponding wild-type enzyme. Comparison of the substrate specificity between the mutant and wild-type enzymes suggests that the substrate specificity of the D-hydantoinase is closely linked with the oligomeric structure.

Expression and Characterization of Truncated Recombinant Human Cytochrome P450 2J2

  • Park, Hyoung-Goo;Lim, Young-Ran;Han, Songhee;Kim, Donghak
    • Toxicological Research
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • The human cytochrome P450 2J2 catalyzes an epoxygenase reaction to oxidize various fatty acids including arachidonic acid. In this study, three recombinant enzyme constructs of P450 2J2 were heterologously expressed in Escherichia coli and their P450 proteins were successfully purified using a $Ni^{2+}$-NTA affinity column. Deletion of 34 amino acid residues in N-terminus of P450 2J2 enzyme (2J2-D) produced the soluble enzyme located in the cytosolic fraction. The enzymatic analysis of this truncated protein indicated the typical spectral characteristics and functional properties of P450 2J2 enzyme. P450 2J2-D enzymes from soluble fraction catalyzed the oxidation reaction of terfenadine to the hydroxylated product. However, P450 2J2-D enzymes from membrane fraction did not support the P450 oxidation reaction although it displayed the characteristic CO-binding spectrum of P450. Our finding of these features in the N-terminal modified P450 2J2 enzyme could help understand the biological functions and the metabolic roles of P450 2J2 enzyme and make the crystallographic analysis of the P450 2J2 structure feasible for future studies.

Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Coprinus cinereus: Roles of C-Terminal Basic Amino Acid-Rich Extension in Its SDS Resistance, Thermostability, and Activity

  • Hu, Hang;Chen, Kaixiang;Li, Lulu;Long, Liangkun;Ding, Shaojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.775-784
    • /
    • 2017
  • A neutral xylanase (CcXyn) was identified from Coprinus cinereus. It has a single GH10 catalytic domain with a basic amino acid-rich extension (PVRRK) at the C-terminus. In this study, the wild-type (CcXyn) and C-terminus-truncated xylanase ($CcXyn-{\Delta}5C$) were heterologously expressed in Pichia pastoris and their characteristics were comparatively analyzed with aims to examine the effect of this extension on the enzyme function. The circular dichorism analysis indicated that both enzymes in general had a similar structure, but $CcXyn-{\Delta}5C$ contained less ${\alpha}-helices$ (42.9%) and more random coil contents (35.5%) than CcXyn (47.0% and 32.8%, respectively). Both enzymes had the same pH (7.0) and temperature ($45^{\circ}C$) optima, and similar substrate specificity on different xylans. They all hydrolyzed beechwood xylan primarily to xylobiose and xylotriose. The amounts of xylobiose and xylotriose accounted for 91.5% and 92.2% (w/w) of total xylooligosaccharides (XOS) generated from beechwood by CcXyn and $CcXyn-{\Delta}5C$, respectively. However, truncation of the C-terminal 5-amino-acids extension significantly improved the thermostability, SDS resistance, and pH stability at pH 6.0-9.0. Furthermore, $CcXyn-{\Delta}5C$ exhibited a much lower $K_m$ value than CcXyn (0.27 mg/ml vs 0.83 mg/ml), and therefore, the catalytic efficiency of $CcXyn-{\Delta}5C$ was 2.4-times higher than that of CcXyn. These properties make $CcXyn-{\Delta}5C$ a good model for the structure-function study of $({\alpha}/{\beta})_8$-barrel-folded enzymes and a promising candidate for various applications, especially in the detergent industry and XOS production.

Roles of Carbohydrate-Binding Module (CBM) of an Endo-β-1,4-Glucanase (Cel5L) from Bacillus sp. KD1014 in Thermostability and Small-Substrate Hydrolyzing Activity

  • Lee, Jae Pil;Shin, Eun-Sun;Cho, Min Yeol;Lee, Kyung-Dong;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2036-2045
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel5L, was cloned using the shot-gun method from Bacillus sp.. The gene, which contained a predicted signal peptide, encoded a protein of 496 amino acid residues, and the molecular mass of the mature Cel5L was estimated to be 51.8 kDa. Cel5L contained a catalytic domain of glycoside hydrolase (GH) family 5 and a carbohydrate-binding module family 3 (CBM_3). Chromatography using HiTrap Q and CHT-II resulted in the isolation of two truncated forms corresponding to 50 (Cel5L-p50) and 35 kDa (Cel5L-p35, CBM_3-deleted form). Both enzymes were optimally active at pH 4.5 and $55^{\circ}C$, but had different half-lives of 4.0 and 22.8 min, respectively, at $70^{\circ}C$. The relative activities of Cel5L-p50 and Cel5L-p35 for barley ${\beta}$-glucan were 377.0 and 246.7%, respectively, compared to those for carboxymethyl-cellulose. The affinity and hydrolysis rate of pNPC by Cel5L-p35 were 1.7 and 3.3 times higher, respectively, than those by Cel5L-p50. Additions of each to a commercial enzyme set increased saccharification of pretreated rice straw powder by 17.5 and 21.0%, respectively. These results suggest CBM_3 is significantly contributing to thermostability, and to affinity and substrate specificity for small substrates, and that these two enzymes could be used as additives to enhance enzymatic saccharification.

Rapid Preparation of Truncated Transaminases using a PCR-based Cell-free Protein Synthesis System (PCR 기반의 무세포 단백질 발현 시스템을 이용한 절단 트랜스아미나제의 고속생산)

  • Kwon, Yong-Chan;Park, Kyung-Moon;Kim, Dong-Myung
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.302-305
    • /
    • 2006
  • In this work, we attempted the application of cell-free protein synthesis technology for the rapid generation of truncated enzymes. Truncated DNAs of a transaminase were PCR-amplified and directly expressed in cell-free protein synthesis reactions. Variants of the transaminase were rapidly prepared and analyzed for their enzymatic activity. Described method that combines the PCR and cell-free protein synthesis technologies will offer a versatile platform for the rapid generation of optimally modified protein species.

Overexpression, Purification and Truncation Analysis of RmlC Protein of Mycobacterium tuberculosis

  • Lee, Jong-Seok;Lee, Tae-Yoon;Park, Jae-Ho;Kim, Jong-Sun;Lee, Tae-Jin;Lee, Jai-Youl;Kim, Sung-Kwang
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.4
    • /
    • pp.273-282
    • /
    • 2000
  • dTDP-rhamnose provides L-rhamnose to the bridge-like structure between mycolyl arabinogalactan and peptidoglycan of the mycobacterial cell wall. dTDP-rhamnose is composed of glucose-l-phosphate and dTTP by four enzymes encoded by rmlA-D. To determine the region(s) of RmlC protein essential for its dTDP-4-keto-6-deoxyglucose epimerase activity, we overexpressed both whole (202 amino acids) and three different truncated (N-terminal 106 or 150 or C-terminal 97 amino acids) RmlC proteins of Mycobacterium tuberculosis. The RmlC enzyme activity in the soluble lysates of ${\Delta}rmlC$ E. coli strain $S{\Phi}874$ (DE3 PlysS) expressing the wild type or truncated rmlC genes was initially analyzed by three sequential reactions from dTDP-glucose to dTDP-rhamnose in the presence of purified RmlB and RmlD. All three soluble lysates containing the truncated RmlC proteins showed no enzyme activity, while that containing the wild type RmlC was active. This wild type RmlC was then overexpressed and purified. The incubation of the purified RmlC enzyme so obtained with dTDP-4-keto-6-deoxyglucose resulted in the conversion of dTDP-4-keto-rhamnose. The results show that the truncated regions of the RmlC protein are important for the RmlC enzyme activity in M. tuberculosis.

  • PDF

Constitutive Expression of Lipase on the Cell Surface of Escherichia coli using OmpC Anchoring Motif

  • Lee, Seung Hwan;Lee, Sang Yup
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.280-285
    • /
    • 2020
  • We have developed a constitutive display system of the Pseudomonas fluorescens SIK W1 TliA lipase on the cell surface of Escherichia coli using E. coli outer membrane protein C (OmpC) as an anchoring motif, which is an economical compared to induced system. For the constitutive expression of truncated OmpC-TliA fusion proteins, gntT104 promoter was employed. Cell growth was not affected by over expression of fusion protein during entire culture time, suggesting cell lysis was not a problem. The localization of truncated OmpC-TliA fusion protein on the cell surface was confirmed by immunofluorescence microscopy and measuring whole cell lipase activity. Constitutively displayed lipase was very stable, retaining activity enantioselectivity throughout the five repeated reactions. These results suggest that OmpC from E. coli be a useful anchoring motif for displaying enzymes on the cell surface without any inducers, and this stable surface display system can be employed for a broad range of biotechnological applications.

Induction of Thioredoxin by Oxidative Stress and Overexpression of Thioredoxin in Lung Cancer Tissue (산화 스트레스에 의한 Thioredoxin의 발현과 폐암조직에서의 발현)

  • Lee, Jang-Hoon;Kim, Hyung-Jung;Ahn, Chul-Min;Kim, Sung-Kyu;Lee, Won-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.3
    • /
    • pp.327-337
    • /
    • 1999
  • Background: Reactive oxygen species are involved in multi-stage process of carcinogenesis. The moot of cancer cell lines and cancer cells in tumor tissue produce reactive oxygen species and on the other hand, the activities of catalase, Mn- and CuZn-superoxide dismutase in tumor cells are usually low. These persistent oxidative stress in tumor tissue facilitates tumor invasion and metastasis. 12-kDa thioredoxin, which regulates the intracellular redox potential with glutathione and glutaredoxin is involved in cell activation, proliferation, differentiation and redox-mediated apoptosis. It is also purified as 14-kDa and 10-kDa eooinophilic cytotoxic enhancing factor(ECEF) from human histiocytic cell(U937) and 10-kDa ECEF has more than 20 times eosinophilic stimulation activity than 14-kDa ECEF. It has been reported that adult T-cell leukemia, squamous cell carcinoma of uterine cervix, and hepatocellular carcinoma show increased amounts of human thioredoxin and thioredoxin mRNA is increased in lung cancer. In this study, we investigated the expression of conventional antioxidant enzymes such as catalase, CuZn-SOD, and glutathione peroxidase and thioredoxin in lung cancer tissue compared to adjacent normal lung tissue and the induction of thioredoxin in macrophage cells after treatment of oxidative stress and endotoxin Methods: We measured the amount of conventional antioxidant enzymes such as catalase, CuZn-SOD, and glutathione peroxidase and thioredoxin in lung cancer tissue compared to adjacent normal lung tissue by immunoblot analysis and the induction of thioredoxin in mouse monocyte-macrophage cells(RAW 264.7) by treatment of 5 ${\mu}M$ menadione and 1 ${\mu}g/ml$ endotoxin Results: On immunoblot analysis, the expression of 12-kDa thioredoxin was increased in lung cancer tissue compared to paired normal lung tissue. but the expression of catalase and CuZn-SOD were decreased in lung cancer tissue compared to paired normal tissue and the expression of glutathione peroxidase in lung cancer was variable. The expression of truncated thioredoxin was also increased in lung cancer. When mouse monocyte-macrophage cells were treated with 5 ${\mu}M$ menadione and 1 ${\mu}g/ml$ endotoxin, the expression of thioredoxin was peaked at 12 hrs and sustained to 48 hrs. Conclusion: In contrast with other conventional antioxidants, the expression of 12-kDa and truncated thioredoxin in lung cancer were increased and it is closely associated with persistent oxidative stress in tumor microenvironment. Considering especially the biological functions of truncated thioredoxin, the increased amount of truncated thioredoxin has significant role in tumor growth through cell proliferation.

  • PDF

Structural Investigation and Homology Modeling Studies of Native and Truncated Forms of $\alpha$-Amylases from Sclerotinia sclerotiorum

  • Ben Abdelmalek, Imen;Urdaci, Maria Camino;Ali, Mamdouh Ben;Denayrolles, Muriel;Chaignepain, Stephane;Limam, Ferid;Bejar, Samir;Marzouki, Mohamed Nejib
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1306-1318
    • /
    • 2009
  • The filamentous ascomycete Sclerotinia sclerotiorum is well known for its ability to produce a large variety of hydrolytic enzymes. Two $\alpha$-amylases ScAmy54 and ScAmy43 predicted to play an important role in starch degradation were showed to produce specific oligosaccharides essentially maltotriose that have a considerable commercial interest. Primary structure of the two enzymes was established by N-terminal sequencing, MALDI-TOF masse spectrometry and cDNA cloning. The two proteins have the same N-terminal catalytic domain and ScAmy43 derived from ScAmy54 by truncation of 96 amino acids at the carboxyl-terminal region. Data of genomic analysis suggested that the two enzymes originated from the same $\alpha$-amylase gene and that truncation of ScAmy54 to ScAmy43 occurred probably during S. sclerotiorum cultivation. The structural gene of Scamy54 consisted of 9 exons and 8 introns, containing a single 1,500-bp open reading frame encoding 499 amino acids including a signal peptide of 21 residues. ScAmy54 exhibited high amino acid homology with other liquefying fungal $\alpha$-amylases essentially in the four conserved regions and in the putative catalytic triad. A 3D structure model of ScAmy54 and ScAmy43 was built using the 3-D structure of 2guy from A. niger as template. ScAmy54 is composed by three domains A, B, and C, including the well-known $(\beta/\alpha)_8$ barrel motif in domain A, have a typical structure of $\alpha$-amylase family, whereas ScAmy43 contained only tow domains A and B is the first fungal $\alpha$-amylase described until now with the smallest catalytic domain.

Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells

  • Shrestha, Pravesh;Yun, Ji-Hye;Kim, Woo Taek;Kim, Tae-Yoon;Lee, Weontae
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.242-249
    • /
    • 2016
  • A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.