Browse > Article
http://dx.doi.org/10.4014/jmb.0903.03013

Structural Investigation and Homology Modeling Studies of Native and Truncated Forms of $\alpha$-Amylases from Sclerotinia sclerotiorum  

Ben Abdelmalek, Imen (Institut National des Sciences Appliquees et de Technologie (INSAT))
Urdaci, Maria Camino (LMBA)
Ali, Mamdouh Ben (Centre de Biotechnologie de Sfax)
Denayrolles, Muriel (LMBA)
Chaignepain, Stephane (Institut Europeen de Chimie et Biologie (IECB))
Limam, Ferid (Institut National des Sciences Appliquees et de Technologie (INSAT))
Bejar, Samir (Centre de Biotechnologie de Sfax)
Marzouki, Mohamed Nejib (Institut National des Sciences Appliquees et de Technologie (INSAT))
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.11, 2009 , pp. 1306-1318 More about this Journal
Abstract
The filamentous ascomycete Sclerotinia sclerotiorum is well known for its ability to produce a large variety of hydrolytic enzymes. Two $\alpha$-amylases ScAmy54 and ScAmy43 predicted to play an important role in starch degradation were showed to produce specific oligosaccharides essentially maltotriose that have a considerable commercial interest. Primary structure of the two enzymes was established by N-terminal sequencing, MALDI-TOF masse spectrometry and cDNA cloning. The two proteins have the same N-terminal catalytic domain and ScAmy43 derived from ScAmy54 by truncation of 96 amino acids at the carboxyl-terminal region. Data of genomic analysis suggested that the two enzymes originated from the same $\alpha$-amylase gene and that truncation of ScAmy54 to ScAmy43 occurred probably during S. sclerotiorum cultivation. The structural gene of Scamy54 consisted of 9 exons and 8 introns, containing a single 1,500-bp open reading frame encoding 499 amino acids including a signal peptide of 21 residues. ScAmy54 exhibited high amino acid homology with other liquefying fungal $\alpha$-amylases essentially in the four conserved regions and in the putative catalytic triad. A 3D structure model of ScAmy54 and ScAmy43 was built using the 3-D structure of 2guy from A. niger as template. ScAmy54 is composed by three domains A, B, and C, including the well-known $(\beta/\alpha)_8$ barrel motif in domain A, have a typical structure of $\alpha$-amylase family, whereas ScAmy43 contained only tow domains A and B is the first fungal $\alpha$-amylase described until now with the smallest catalytic domain.
Keywords
Amino acid sequence; $\alpha$-amylases; cloning; modeling; Sclerotinia sclerotiorum;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Ben Abdeimalek Khedher, I., P. Bressollier, M. C. Urdaci, F. Limam, and M. N. Marzouki. 2008. Biochemical characterization of Sclerotinia sclerotiorum $\alpha$-amylase ScAmyl, assay in starch liquefaction treatments. J. Food Biochem. 32: 597-614   DOI   ScienceOn
2 Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp, and D. L. Wheeler. 2000. GenBank. Nucleic Acids Res. 28: 15-18   DOI   ScienceOn
3 Brzozowski, A. M. and G. J. Davies. 1997. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 $\AA$ resolution. Biochemistry 36: 10837-10845   DOI   ScienceOn
4 Champreda, V., P. Kanokratana, R. Sriprang, S. Tanapongpipat, and L. Eurwilaichitr, 2007. Purification, biochemical characterization, and gene cloning of a new extracellular therrnotolerant and glucose tolerant maltooligosaccharide-forming alpha-amylase from an endophytic ascomycete Fusicoccum sp. BCC4124. Biosci. Biotechnol. Biochem. 71: 2010-2020   DOI   ScienceOn
5 Ellouze, O., M. Mejri, I. Smaali, F. Limarn, and M. N. Marzouki. 2007. Induction, properties and application of xylanases activity from Sclerotinia sclerotiorum S2 fungus. J. Food Biochem. 31: 96-107   DOI   ScienceOn
6 Gurr, S. J., S. E. Unkles, and J. R. Kinghoun. 1987. The structure and organization of nuclear genes of filamentous fungi, pp. 93-139. In J. R. Kinghoun (ed.). Gene Structure in Eukaryotic Microbe. IRL Press, Oxford
7 Iefuji, H., M. Chino, M. Kato, and Y. Limura, 1996. Raw starch-digesting and thermostable $\alpha$-amylase from the yeast Cryptococcus sp. S-2: Purification, characterization, cloning and sequencing. Biochem. J. 318: 989-996   PUBMED   ScienceOn
8 Janecek, S. 2002. How many conserved sequence regions are there in the $\alpha$-amylase family? Biologia (Bratislava) 57: 29-41
9 Sajedi, R. H., M. Taghdir, H. Naderi-Manesh, K. Khajeh, and B. Ranjbar. 2007. Nucleotide sequence, structural investigation and homology modelling studies of $Ca^{2+}$-independent $\alpha$-amylase with acidic pH-profile. J. Biochem. Mol. Biol. 40: 315-324   DOI   PUBMED
10 Schwed, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL. An automated protein homology-modeling Server. Nucleic Acid. Res. 31: 3381-3385   DOI   ScienceOn
11 Sogaard, M., F. L. Olsen, and B. Svensson. 1991. C-terminal processing of barley $\alpha$-amylase 1 in malt, aleurone protoplasts, and yeast. Proc. Natl. Acad. Sci. 88: 8140-8144   DOI   ScienceOn
12 Takagi, M., S. Lee, and T. Imanaka. 1996. Diversity in size and alkaliphily of thermostable $\alpha$-amylase-pullulanases (AapT) produced by recombinant Escherichia coli, Bacillus subtilis and the wild-type Bacillussp. J. Ferment. Bioeng. 81: 557-559   DOI   ScienceOn
13 Steyn, A. J., J. Marmur, and I. S. Pretorius. 1995. Cloning, sequence analysis and expression in yeasts of a cDNA containing a Lipomyces kononenkoae alpha-amylase-encoding gene. Gene 166: 65-71   DOI   ScienceOn
14 Strobl, S., K. Maskos, M. Betz, G Wiegand, R. Huber, F. X. Gomis-Ruth, and R. Glockshuber. 1998. Crystal structure of yellow meal worm $\alpha$-amylase at 1.64 $\AA$ resolutions. J. Mol. Biol. 278: 617-628   DOI   ScienceOn
15 Svenssen, B., M. Tovborg Jensen, H. Mori, K. Sass Bak-Jensen, B. Bonsager, P. K. Nielsen, B. Brite Kram hoft, M. Prae torius-Ibba J. Nohr, and N. Juge. 2002. Fascinating facets of function and structure of amylolytic enzyme of glycoside hydrolase family 13. Biologica (Bratislava) 57: 5-19
16 Reymond, P., G. Deleage, C. Rascle, and M. Fevre. 1994. Cloning and sequence analysis of a polygalacturonase-encoding gene from the phytopathogenic fungus Sclerotinia sclerotiorum. Gene 146: 233-237   DOI   ScienceOn
17 Kaneko, A., S. Sudo, Y. Takayasu-Sakamoto, G. Tamura, T. Ishikawa, and T. Oba. 1996. Molecular cloning and determination of the nucleotide sequence of a gene encoding an acid-stable $\alpha$-amylase from Aspergillus kawachii. J. Ferment. Bioeng. 81: 292-296   DOI   ScienceOn
18 Wierenga, R K. 2001. The TIM-barrel fold: A versatile framework for efficient enzymes. FEBS Lett. 492: 193-198   DOI   PUBMED   ScienceOn
19 Ben Ali, M., M. Mezghani, and S. Bejar. 1999. A thermostable $\alpha$-amylase producing maltohexaose from a new isolated Bacillus sp. USI00: Study of activity and molecular cloning of the corresponding gene. Enzyme Microb. Technol. 24: 584-589   DOI   ScienceOn
20 Jespersen, H. M., E. A. Mac Gregor, M. R. Sierks, and B. Svensson. 1991. Comparison of the domain level organization of starch hydro lases and related enzymes. Biochem. J. 280: 51-55   PUBMED   ScienceOn
21 Marco, J. L., L. A. Bataus, F. F. Valencia, C. J. Ulhoa, S. AstolfiFilho, and C. R. Felix. 1996. Purification and characterization of a truncated Bacillus subtilis $\alpha$-amylase produced by Escherichia coli. Appl. Microbiol. Biotechnol. 44: 746-752   PUBMED   ScienceOn
22 Swift, H. J., L. Brady, Z. S. Derewanda, E. J. Dodson, G G Dodson, J. P. Turkenburg, and A. J. Wilkinson. 1991. Structure and molecular model refinement of Aspergillus oryzae (TAKA) $\alpha$-amylase: An application of the simulated-annealing method. Acta Crystallogr. 47: 535-544   DOI   ScienceOn
23 Boel, E. L., A. M. Brzozowski, Z. Derewenda, G. G. Dodson, V. J. Jensen, S. B. Petersen, H. Swift, L. Thim, and H. F. Woldike. 1990. Calcium binding in $\alpha$-amylases, an X-Ray diffraction study at 2.1 A resolutions of two enzymes from Aspergillus. Biochemistry 29: 6244-6249   DOI   ScienceOn
24 MacGregor, E. A, S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the $\alpha$-amylase family of enzymes. Biochem. Biophys. Acta 1546: 1-20   DOI   ScienceOn
25 Boland, G. J. and R. Hall. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16: 94-108
26 Shevchenko, A., M. Wilm, O. Vom, and M. Mann. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858   DOI   ScienceOn
27 Nakajima, R., T. Imanaka, and S. Aiba. 1985. Comparison of amino acid sequences of eleven different amylase. Appl. Microbiol. Biotechnol. 23: 355-360   ScienceOn
28 Janecek, S., B. Svensson, and B. Henrissat. 1997. Domain evolution in the $\alpha$-amylase family. J. Mol. Evol. 45: 322-331   DOI   ScienceOn
29 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680   DOI   ScienceOn
30 Ben Abdeimalek Khedher, I., M. C. Urdaci, F. Limam, M. N. Marzouki, J. M. Schmitter, and P. Bressollier. 2008. Purification, characterization and partial primary sequence of a majormaltotriose-producing $\alpha$-amylase ScAmy43 from Sclerotinia sclerotiorum. J. Microbiol. Biotechnol. 18: 1555-1563   PUBMED   ScienceOn
31 Janecek, S. 2000. Structural features and evolutionary relationships in the $\alpha$-amylase family, pp. 19-54. In M. Ohnishi, T. Hayashi, S. Ishijima, and T. Kuriki (eds.). Glycoenzymes. Japan Scientific Societies Press, Tokyo
32 Sanger, F., S. NickIen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74: 5463-5467   DOI   ScienceOn
33 Takasaki, Y., M. Kitaiima, T. Tsuruta, M. Nonoguchi, S. Hayashi, and K. Imada. 1991. Maltotriose-producing amylase from Microbacterium imperiale. Agric. Biol. Chem. 55: 687-692   DOI
34 Leemhuis, H., U. F Wehmeier, and L. Dijkhuizen. 2004. Single amino acid mutations interchange the reaction specificities of cyclodextrin glycosyltransferase and the acarbose-modifying enzyme acarviosyl transferase. Biochemistry 43: 13204-13213   DOI   ScienceOn
35 Machius, M., G. Wiegand, and R. Huber. 1995. Crystal Structure of Calcium-depleted Bacillus licheniformis $\alpha$-amylase at 2.2 $\AA$ Resolution. J. Mol. Biol. 246: 545-559   DOI   ScienceOn
36 Long, C. M., M. J. Virolli, S. Chang, and M. J. Bibb. 1987. Alpha-amylases genes of Streptomyces limosus: Nucleotide sequence, expression motifs and amino acid sequence homology to mammalian and invertebrate $\alpha$-amylase. J. Bacteriol. 169: 5745-5754   PUBMED
37 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428   DOI
38 Birney, E., M. Clamp, and R. Durbin. 2004. Genewise and Genomewise. Genome Res. 14: 988-995   DOI   ScienceOn
39 Ohdan, K., T. Kuriki, H. Kaneko, J. Shimada, T. Takada, Z. Fujimoto, H. Mizuno, and S. Okada. 1999. Characteristics of two forms of $\alpha$-amylases and structural implication. Appl. Environ. Microbiol. 65: 4652-4658   PUBMED   ScienceOn
40 Yoshigi, N., T. Chikano, and M. Kamimura 1985. Characterization of maltopentaose-producing bacterium and its cultural conditions. Agric. Biological Chem. 49: 2379-2384   DOI
41 Robyt, J. F. and R. J. Ackerman. 1971. Isolation, purification and characterization of a maltotetraose-producing amylase from Pseudomonas stutzeri. Arch. Biochem. Biophys. 145: 105-114   DOI   ScienceOn
42 Coutinho, P. M. and B. Henrissat 1999. Carbohydrate-active enzymes: An integrated database approach, pp. 3-12. In H. J. Gilbert, G Davies, B. Henrissat, and B. Svensson (eds.). Recent advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, U.K
43 Hayashi, T., T. Akiba, and K. Horikoshi. 1989. Properties of new alkaline maltohexaose forming amylase. Appl. Microbiol. Biotechnol. 28: 281-285
44 Itoh, R., C. Saint-Marc, S. Chaignepain, R. Katahira, J. M. Schmitter, and B. Daignan-Fomier, 2003. The yeast ISNI (YOR155c) gene encodes a new type of IMP-specific 5'-nucleotidase. BMC Biochem. 4: 4-11   DOI   PUBMED   ScienceOn
45 MacGregor, E. A. 1988. $\alpha$-amylase structure and activity. J. Protein Chem. 7: 399-415   DOI   PUBMED   ScienceOn
46 Nielsen, J. E. and T. V. Borchert. 2000. Protein engineering of bacterial $\alpha$-amylases. Biochem. Biophys. Acta 1543: 253-274   DOI   ScienceOn
47 Ke, T., X. D. Ma, P. H. Mao, X. Jin, S. J., Chen, Y. Li, L. X. Ma, and G Y. He. 2007. A mutant $\alpha$-amylase with only part of the catalytic domain and its structural implication. Biotechnol. Lett. 29: 117-122   PUBMED   ScienceOn
48 Matsuura, Y. 2002. A possible mechanism of catalysis involving three essential residues in the enzymes of $\alpha$-amylase family. Biologia (Bratislava) 57: 21-27   ScienceOn
49 Van der Maarel, M. J., B. Vander Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch converting enzymes of the $\alpha$-amylases family. J. Biotechnol. 94: 137-155   DOI   ScienceOn
50 Vujicic-Zagar, A. and B. W. Dijkstra, 2006. Monoclinic crystal form of Aspergillus niger $\alpha$-amylase in complex with maltose at 1.8 Aresolution. Acta Crystallogr. 62: 716-721
51 Mandels, M. and J. Webber. 1969. The production of cellulases. Adv. Chem. Ser. 95: 391-412   DOI
52 Brzozowski, A. M., D. M. Lawson, J. P. Turkenburg, H. Bisgaard-Frantzen, A. Svendsen, T. V. Borchert, Z. Dauter, K. S. Wilson, and G. J. Davies. 2000. Structural analysis of a chimeric bacterial $\alpha$-amylase, High-resolution analysis of native and ligand complexes. Biochemistry 39: 9099-9107   DOI   ScienceOn
53 Matsubara, T., Y. Ben Ammar, T. Anindyawati, S. Yamamoto, K. Ito, M. lizuka, and N. Minamiura. 2004. Molecular cloning and determination of the nucleotide sequence of raw starch digesting $\alpha$-amylase from Aspergillus awamori KT-11. J. Biochem. Mol. Biol. 37: 429-438   DOI   PUBMED
54 Svenssen, B. 1994. Protein engineering in the $\alpha$-amylase family: Catalytic mechanism, substrate specificity and stability. Plant Mol. Biol. 25: 141-157   DOI   PUBMED
55 Nakada, T., M. Kubota, S. Sakari, and Y. Tsujisaka. 1990. Purification and characterization of two forms of maltotetraose-forming amylase from Pseudomonas Stuzeri. Agric. Biol. Chem. 54: 737-743   DOI   PUBMED   ScienceOn
56 Kim, T. U., B. G. Gu, J. Y. Jeong, S. M. Byurn, and Y. C. Shin. 1995. Purification and characterization of a maltotetraose-forming alkaline $\alpha$-amylase from an alkaliphilic Bacillus strain GM 8901. Appl. Environ. Microbiol. 61: 3105-3112   PUBMED   ScienceOn
57 Qian, M., R. Haser, G. Buisson, E. Duee, and F. Payan. 1994. The active center of a mammalian $\alpha$-amylase. Structure of the complex of a pancreatic $\alpha$-amylase with a carbohydrate inhibitor refined to 2.2 $\AA$ resolutions. Biochemistr. 33: 6284-6294   DOI   ScienceOn
58 Vihinen, M., T. Peltonen, A. Litia, I. Suomien, and P. Mantsata. 1994. C-tenninal truncations of a thermostable Bacillus stearothermophilus $\alpha$-amylase. Protein Eng. 7: 1255-1259   DOI   PUBMED
59 Kyte, J. and R. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132   DOI   PUBMED
60 Sambrook, J. E., F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A laboratory Mammal, New York: Cold Spring Harbor Laboratory Press, New York, U.S.A.